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Kondo Bosons and the Kondo Lattice: Microscopic Basis for the Heavy Fermi Liquid
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A consistent Fermi-liquid theory of heavy-electron compounds at lo~ temperatures is microscop-
ically derived from the Kondo-lattice model. Interactions between the heavy quasiparticles are
mediated by fluctuations of effective valence-conduction hybridization parameters. The computed
values of the Wilson ratio, the T ln T term in the specific heat, and the T coefficient of the low-
temperature resistivity are in agreement ~ith systematic experimental trends.

PACS numbers: 72.15.Qm, 65.40.—f, 75.20.Hr

Heavy-electron systems exhibit a rich variety of
low-temperature ( T) behavior. '2 In general the low- T
state is a Fermi liquid with a highly enhanced density
of states. In many cases it may further undergo a tran-
sition at lower temperature to superconductivity or
magnetic ordering. The following strikingly systematic
features in the data are noted: (i) The measured
dimensionless Wilson ratio 8 of linear coefficient of
the specific heat y—= limT 0 C„/Tand the susceptibili-
ty X is close to, but always greater than, unity. (ii) A
large number of systems' exhibit a rapid decrease in
C„/T with increasing T. (iii) The resistivity in rela-
tively clean samples varies as p = A T2 at low T, where
A appears3 to scale with y .

Mean-field theories, which incorporate the large
on-site Coulomb repulsion U between f electrons of
the rare-earth ions, have been formulated in several
approaches. '4 Among these are the Gutzwiller ap-
proximation and the large-N limit of the Kondo lattice
(where N is the degeneracy of the fractionally occupied
f levels). They lead to a renormalized band-structure
scheme which yields the "heavy" quasiparticles and
can explain the large enhancements of C„and X, as
well as the fact that 8 =1. However, the fluctuation
corrections to mean-field theory and the quasiparticle

dynamical interactions have not yet been systematical-

ly determined from a microscopic model. The above
observations (i), (ii), and (iii) suggest that such in-

teractions do play an important role in both thermo-
dynamic and transport data.

It is the purpose of the present paper to derive a
consistent and systematic Fermi-liquid description of
the Kondo lattice with the 1/N-Kondo-boson (KB) ap-
proach as the microscopic basis. Our goals are three-
fold: (a) to demonstrate the analytic structure of the
corrections of leading order in 1/N to the Kondo-
lattice mean-field theory, (b) to compute the Landau
parameters and associated vertex functions and relate
them to R, X, C„, and p, and (c) to show that our
results may explain the experimental observations
(i)-(iii), and thus provide insight into some universal
features of these systems.

For simplicity we study the Coqblin-Schrieffer lat-

tice (CSL) which is a Kondo limit of the large-U
Fano-Anderson lattice, in which the f electrons have
vanishingly small charge fluctuations. It was already
shown5 6 that the same Lagrangean describes the lat-
tice model away from that limit, provided one includes
the finite f-charge susceptibility X, in Eq. (4a).

The partition function is given by (h = 1)

~p

ZcsL= D i «'cf'f expI — «~ I-(~)+ t Xt ~i(fi.mfi, m Qo) ~»—
L= X„c„'(tl, +e„)c„+f„' B,f„+(J/N) X, , c, f,. f, c,.„

where c, and ft are Grassmann variables of an electron at site r, and magnetic quantum number m,

~m~ ~ (N 1)/2, in the co—nduction band (of dispersion ei, ) and the dispersionless fband, respectively. J is the
antiferromagnetic Kondo interaction energy. The integration over 1i.,(r) imposes the local constraint of the f
charge conservation, nf = Qo, at all times and sites. Qo is kept as a fixed parameter (instead of Q0=1/N) in order

to define a true N-independent mean-field theory. The Bose fields b;(7) = r, e ' are introduced by a Hubbard-6 j8,.

Stratonovich transformation which allows us to integrate out the fermions and evaluate ZcsL by steepest des-
cents. s 6 The saddle point rq

= r&5q 0, iraq
= epq 0, is given by the variational mean-field equations, where ro is the

effective hybridization constant and ef the renormalized f-level renormalized energy. For lack of space, we omit a
full discussion of the mean-field equations and their detailed solutions, which have already been presented in the
literature. 4 The mean-field theory, that is, the order O((1/N)0) of this model, in general corresponds to a renor-
malized band structure given by

Eir =
2 (tg+ef) + ( [ 2 (eg —E'J ) ] + ri) I I:ef + rocot8(tg)
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1/J Q~,
D(q) = —(1/N)[II(q)+IIO] ', IIa=2

Qx, 0
(4a)

i

where IIO is the "unscreened vertex" in which X, is set equal to zero for the CSL, and the bubble diagram II is
given by

11„,, = —P-' $ C;. (e„,e„„)C;.(e„„,e„)G„.G;„.
k, ee ~+

The C s are the quasiparticle-boson vertices arising from the orthogonal transformation from the (c,j) basis to the
(+, —) bands:

Ci = sin(8k+ ek+q), Ci + = cos(8k+ ek+q), Ci++ = Ci

(4b)

(4c)
C2 = i cosekcosek+~C2 ,

+ = —icoseksinek+~, C2++ = i sineksinek+~.

The functions in Ii contain interband and intraband terms, the latter being very similar in their low-(q, ~)
behavior to the familiar Lindhard functions or polarization insertions in the electron gas. It can also be verified
that lim „Odet( —D) and 11m~ 0Tr( —D) are positive, which ensures the stability of the mean-field solu-
tion. 7 The explicit factor of 1/N in Eq. (4a) provides us with the small parameter of the RPA or Gaussian approxi-
mation, since all the corrections either involve higher powers of D, or do not contain the maximal number of inter-
nal bubbles which reduces their contribution by factors of I/N.

We can now derive the quasiparticle self-energy X and vertex function I to leading order in 1/N by functionally
differentiating ZcsL with respect to source currents. The quasiparticles interact via the exchange of a single
Kondo-boson propagator (see Fig. 1). This propagator can be physically interpreted as an effective hybridization
fluctuation which is strongly screened by the quasiparticle density response II. The effective-mass correction is
given by the usual T= 0 expression expanded for small X~ 1/N:

"D., (q, )c„-.(e„,e„,)c;,—(e„,, e, )
k q~', e

I+O(P, —Ek+ ) O(P, —Ek+ )Q Q (5)
Ek Ek+q Oi Ek Ek+q +~

which defines the function 8(e). We choose our units single-impurity analysis of Read and Newns and intro-
of energy so that the bare, single-spin, conduction- duce a time-dependent local gauge transformation
electron density of states (or inverse bandwidth) po in which acts simultaneously on the Bose field y, and the
a unit-cell volume satisfies 1/po(p, o) =1, where po is fields f, , and removes the redundant phase of the Bose
defined in terms of the total number of electrons per fields 8, (7 ). The Read-Newns transformation elegant-
unit cell, N, =f de po(e). The paramagnetic state ly bypasses the familiar complications of infrared

possesses an exponentially large (in I/J) value of the divergences associated with unphysical Goldstone bo-

renormalized density of states p at the Fermi level ~ sons. This leads to a 2X2-matrix description of the

which lies in the lower band, p, = Ek (p, o). We choose boson propagator D,, where the index r =1 corre-

to define the dimensionless Kondo lattice temperature sponds to the fluctuations of the local KB amplitude
Tx as the inverse of the mass enhancement factor, r~, and r =2 to the constraint field)~~.
p(p, ) ' = TK = sin'8(p, o) &( 1. Performing the Gaussian integration of the fields r

To go beyond mean-field theory we follow the and)i. , we find the freeenergy tobegivenby
I

F= —(1/p) ln Z = NS + (1/2p) X Tr ln detD ( q) + 0 (1/N), (3)

where So= —(2p) 'g& Trlnok and 6= (iko Ek—) ' are the single-spin mean-field free energy and Green's
function, respectively. Here k and q denote the usual Fermi and Bose four-vector Fourier components, respective-
ly. D, (q) is the KB propagator, given by the random-phase-approximation (RPA) sum of bubble diagrams, such

that

where D' = lim„o [D(co+ ig) —D(cu /q) J. 1 contains t—wo contributions to the leading order in 1/N:

r~' ~ (km k+ q m'k'm' k' —q m')

= x, c„.~(e„,ek„)c;ii (e„„e„, )D,(q) (—= r'")
f -s,X,c„-(e„,e„, ,) c~~ (e„„,e„,)D,(k —k —q) (=- -r'"'")+ o(1/N'). (6)
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We can obtain the Landau scattering amplitudes ( At" } following the usual microscopic prescription9'o: One con-

siders the oi 0 limit of I evaluated on the Fermi surface, i.e., E„=E„,= p, , and projects it onto Legendre poly-

nomials, P,, such that

A'= T 'NS o li, I d" +A/,
Iqa, a/ q 0

A' T i 21+1
I K

2kF2

r 2kF
dK I'"'"(K,O)P 1—

oo I
K

2kF2
(7)

where kF is the Fermi wave ~ector (eF =p,o), and, as
defined earlier, TK is the Fermi-level density of
states. Equation (6) guarantees that the forward-

scattering sum rule is automatically satisfied. To lead-

ing order in 1/N there are no renormalization factors
or other corrections to Eqs. (7). It should be stressed
that in this Fermi-liquid theory the "bare" particles
are the heavy mean-field quasiparticles, and thus
Sm/m in Eq. (5) is not large. Using Eqs. (6) and (7)
we computed the (A~'} numerically. We found that

D(q, 0) is slowly varying, and higher moments de-
crease rapidly with l. Considerable simplification arises
when a parabolic band structure is used for e(k) ~ Ik}2

since angular integrations may then be done analytical-

ly, leaving us with just a one-dimensional numerical
integration. Here we neglect umklapp processes. For
this case the I =0, 1 parameters are (up to corrections
of order TK)

At] = ' + ', AII =1.000+ Af,
N N iso

'

-0.12 Qo

aa'
Drr '(q)

,+ o((iN' )

a
Cr Cr

k, a = "= k+q, t) k,o
—— k+q t1

~o()&N')
k', o' = -, ,g

k'-q, tt k', a' =,.p k'-q t)'
Cr' Crj

FIG. l. The self-energy X and vertex function I" [Eq. (6)]
to leading order in 1/N, which involve a single Kondo-boson
(wavy line) exchange.

In the Landau theory of an SU(N)-invariant Fermi

liquid, the phenomenological parameter Ag is related
to the Wilson ratio by 8 = fg 24~2/(N —1)]X/y
= 1 —A[[. Here, Kit = 1 and g is the electron magnetic
moment. With allowance for some uncertainty in the
effective moments, the result 0 ~ R —1 & 1 appears to
be consistent with the experimentally observed sys-
tematic trendz noted earlier.

A direct differentiation of the free energy in Eq. (3)

with respect to temperature and magnetic field yields X

and C„. The mean-field contributions are Xo

=g N(N2 —I)/12Tx and Co =m2NT/3TK=yoT.
The 1/N corrections arise from the term TrlndetD.
After some algebra it follows that the susceptibility
and specific heat are renormalized such that
X=Xo[1+Sm/m —A)+ 0(1/N2)], and similarly y
= go[1+Sm/m+ O(1/N ) ]. These are known
Fermi-liquid identities related to Ward identities of
spin and charge conservation. Their direct verification
lends further support to our assignment of Landau
parameters in Eq. (7). At this point it is important to
note that this theory is not Galilean invariant (because
of hybridization between bands of largely different
curvature or "masses"). Therefore the Galilean rela-
tion 1+8m/m = (1 —A f/3) ' is incorrect as could be
checked against Eq. (5).

In addition to the correction to y, there exists a
specific-heat correction 5C„analogous to the
paramagnon T3lnT contribution in liquid 3He. Our
analysis follows Engelsberg and co-workers and
Riedel", where D, replaces the RPA susceptibility

that mediates the spin fluctuations. We find

~C„=0.S5(T/T„)'in(T/T„) + O(T'),

TK= QoTx.

It is important to note that this behavior has been ex-
perimentally observed' in, e.g. , UPt3 with Tx = 20-30
K, and it may also be the source of the rapid temperature
dependence of C„T observed in a wide class of heavy
fermion systems. ' By analogy to liquid 3He, it has been
previously attrributed in UPt3 to paramagnons. How-
ever, the degree of independent evidence for an incip-
ient ferromagnetic instability in UPt3 remains contro-
versial. tz The origin of the T3 ln Tbehavior in this KB
theory is the nonanalytic low-(}q},oi) behavior of II
via the ratio co/}q~. The presence of such a term is not
surprising, since it is a general property of theories
with an RPA-like boson mediating the interactions.
On the other hand, it should be stressed that unlike
the paramagnon mechanism, it does not derive solely
from the spin-fluctuation channel, as seen by the rela-
!ive magnitudes of A$ and A$. The contributions to
C„ from higher powers of temperature are much hard-
er to calculate since the temperature dependence of
the variational parameters ro, ~&, and p, must also be
considered in the T3 order and above.
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Using this approach we are also able to estimate the
T2 coefficient of the low-temperature resistivity p-ATz. %'e follow the analogous paramagnon calcula-
tion, '3 and determine A by evaluating BD™/Bto,at
co =0. The result is

p =p,„(T//h TK)'+ 0( T'),

where p~„= h/ e2kFNz=100-300 p, Q cm and where
A. is a factor of order unity. This result is qualitatively
consistent with the remarkable universal scaling3 of A

and y2. It should be emphasized that Qo emerges as a
key parameter which determines the l & 0 Landau param
eters, and the coherence energy scale Tx which appears in
both C„/T and p (Eqs. (9) (10-)J Ou. r analysis'2 of re-
cent pressure-dependent data on UPt3, as well as
universal trends throughout the heavy-fermion materi-

als, lends experimental support to the existence of this
universal coherence scale TK.

Although in many heavy-fermion systems N is not
really large (-2), the present I/N expansion is a sys-
tematic description of the quasiparticle interactions. It
has many satisfying features including the following:
(1) There is dependence on a minimal set of predeter-
mined microscopic parameters. These are the bare
band structure and the Kondo lattice temperature TK.
(2) Translational invariance is ab initio built into the
theory. This is in contrast to "interacting impurities"
approaches where more sophisticated resummation
schemes are needed to recover coherence effects. (3)
It yields the full vertex function [Eq. (6)]. Realistic
band structure, umklapp processes, and phonon in-
teractions'4 must be also considered in any further ap-
plication to real materials.

The possibility that Kondo-boson-mediated pairing
drives the superconductivity in some of the heavy-
fermion compounds may be the most interesting ex-
tension of this theory. The 1= 2 Landau parameters in
Eq. (7) were found to be attractive. A simplistic
deduction' ' of the transition temperature and
order-parameter symmetry from the Landau (to=0)
limit of the vertex function would yield d-wave pair-
ing. However, it might not be applicable as it is in
3He, since it assumes that the frequency cutoff scale in
I is much smaller than the characteristic variations in
the electronic energies. In the KB theory both
relevant frequency scales appear to be of order Tx.
The detailed spectral behavior of the full vertex func-
tion is clearly important and may ultimately provide a
better understanding of this important issue. 8
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Note added. —Recently we received a preprint from
A. Millis and P. A. Lee which applied a similar tech-
nique to the Anderson lattice model using, however,
the Cartesian Kondo-boson coordinates.
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