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Strong competition between four-wave mixing and amplified spontaneous emission in resonant
two-photon excitations is shown to generate radiation fields with strong squeezing and antibunch-
ing. The generated fields are in a new type of coherent state which is an eigenstate of the operator
corresponding to the simultaneous annihilation of photons in two modes.
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In this Letter I report the generation of fields with
strong quantum features such as squeezing and anti-
bunching.! I examine the recent experimental work?
of Malcuit, Gauthier, and Boyd, who reported the
suppression of amplified spontaneous emission (ASE)
in the two-photon resonant excitation of the sodium
3dlevel. In their experiment the suppression occurs as
a result of the competition between the four-wave
mixing (FWM) processes and ASE. The generated
modes grow from vacuum and therefore the quantum
features of the radiation field should be important.
Hence, in order to understand the nature of the gen-
erated fields, a fully quantized treatment of the system
studied by Malcuit, Gauthier, and Boyd is warranted. I
formulate a quantum statistical theory of this experi-
ment. The theory will also be applicable to related sys-
tems involving resonant two-photon excitations. I
present an exact solution for the density matrix of the
generated field. 1 demonstrate that the generated field
is in a new type of coherent state which I refer to as
the pair coherent state. The pair coherent state is an
eigenstate of the operator corresponding to the simul-
taneous annihilation of photons in two modes. This
pair coherent state is distinct® from the other known
coherent states such as two-photon coherent states,
atomic coherent states, or the SU(1,1) coherent states.
I present explicit results for squeezing and antibunch-
ing in the generated fields for a range of system
parameters involving the susceptibilities for FWM and
two-photon absorption. 1 predict quite significant
squeezing in the generated fields.

In the experiment of Malcuit, Gauthier, and Boyd, a
pump laser of frequency w; is used for the two-photon
excitation of the Na 3d level (|1)) starting from the ,

3p/dt=— ilHog,pl — (b’ c bep —2bcpb’ T +pbtcTbe).

Here H.g describes the four-wave mixing process®

Heg= Gb'c'+H.c.

ground state 3s (|3)). The pump laser is assumed to
be sufficiently detuned from the intermediate level 3p
(12)). As a result of the four-wave mixing process
two radiation fields of frequencies w, and w; are gen-
erated. The amplified spontaneous emission is propor-
tional to the excited state (3d) population. The gen-
erated photons at w; and w3 can be reabsorbed by a
two-photon absorption process. I treat the pump field
E(w;) classically and ignore its depletion. The gen-
erated fields at w, and w; are treated quantum
mechanically. Let b,b' (¢,c') be the annihilation and
creation operators for the field at w, (w3). I start from
a microscopic Hamiltonian describing the interaction
of a three-level atomic system with three radiation
fields at w;, w,, and w;. The amplified spontaneous
emission from the system is described by use of the
usual master equation techniques?; i.e., the relaxation
parameters in the equations of motion for the atomic
system have contributions from spontaneous emission.
I assume that the pump is detuned sufficiently enough
so that the intermediate state |2) does not get populat-
ed. This permits me to ignore the spontaneous emis-
sion from the intermediate state. The spontaheous
emission from the state |1) is included through the re-
laxation parameter I'; [Eq. (5)]. The pump is assumed
to be unidirectional. In this work I also ignore the
saturation effects. This leads to considerable simplifi-
cation which is in contrast to the single-photon
resonant situations.> Using the adiabatic elimination
of the atomic variables, and assuming the resonant
condition 2w, =w;3=w;+ w3, 1 have proved that the
dynamical evolution of the fields at w, and w; is
described by the master equation for the field density
matrix p,

(1)

V)]

The coupling constant G is proportional to £?(w;) and the susceptibility® X*) (w;, w;, ;) for four-wave mixing:

G = —21rw3X(3)(w1,w1,wz)Ez(wl)= —2‘n'w2X(3)(w1,wl,w3)E2(w1).
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The parameter « is related to the susceptibility for two-photon absorption® x3 (w3, — w3, w;) through

K=8772w2w3ﬁ ImX(3)(w3, —w;,w))/V, 4)

where V is the quantization volume for the field mode. The susceptibilities for the three-level atomic model are
well known (cf. Ref. 2):

A iNIduPIdBP
x(3) LW, = _3_x(3) -, = &
((Dl wy 0)3) Al (w; w3 wz) ﬁ3A1A3F2 (5)
where
Al=wy—w;, As;=wy— 2w, —w,), 6)

I, is the linewidth of the two-photon transition, and N is the atomic number density.

Solution of the field density matrix equation (1) will yield all the statistical information on the quantum-
mechanical generation of the fields w, and ;. It may be added that solutions of (1) in the limiting cases (a) k=0
and (b) G =0 are known’ in different physical contexts. In the present system both processes are important and
we would like to know the solution for arbitrary values of G/k. Note that Eq. (1) admits an important conserva-
tion law,

((bTb=c'e)p) =0,

This conservation law is useful in finding the solution of (1). The mean-value equations for the field amplitudes
are

p=12, ... )

(b) = —iG{(c"y = t(bc'c), (¢)=—iG(b")y —+k(cb'b), (8)

and thus an infinite hierarchy of equations is generated. This hierarchy could be closed by making suitable approx-
imation; for example, in the semiclassical limit (bee) ~ (b) 1(c) |2, I recover the equations of Ref. 2.

The suppression effects are dominant in the limit of long samples or in the steady-state limit.>® In this limit I
have found a complete quantum-mechanical solution to the density matrix. Note that the fields w, and w; grow

from quantum noise and therefore in view of the conservation law (7), I look for a solution of the form

p= 2 Bulmm)(nnl.

mn=0

)

The coefficients 8, are found from the solution of the recursion relation

LB (m*+1?) =2(m+1)(n+1)Bpms1n41] +iIGBmp+1(n+1) +iGBpp-1n

I have proved that Eq. (10) possesses the solution

Bon= o gy, (= 2O (11)

m'n! K

where By can be obtained from the normalization of
the density matrix. On combining (9) and (11) I get
one of the key results of this Letter: The steady-state
field density matrix is

p=10)p(Ll, = -2iG/x, (12)
10, = M3 I mmy, MSEET a3

P N0yt °§ms2 o
where N is the normalization constant. It can be

checked that the state |{) p is an eigenstate of the
operator bc

belg) ,=¢18) ,. (14)

828

— iG*Bms1a(m+1) = iGBp—yom=0. (10)

The operator bc is the pair annihilation operator, i.e., it
corresponds to the simultaneous annihilation of pho-
tons of frequencies w, and w;. Thus [{) p is a new type
of coherent state associated with the pair annihilation
operator. The state [{), can be expressed in terms of
the usual oscillator coherent states® |z),,|z), for the
two modes,

169,= J LTy T ) Noel. 15

Note that the state [ ) p 1S not the same as the two-
photon coherent states discussed recently in the litera-
ture.® In view of the symmetry with respect to band c,
we can identify |£|Y? as the steady-state value of the
semiclassical field amplitude. Thus the steady-state
value of the field intensity in semiclassical approxima-
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tion will be |{|, the explicit form of which can be ob-
tained from Egs. (3)-(5).

Having obtained the complete density matrix for the
generated fields, I can now examine the quantum
features of the generated field. I show in Fig. 1 the
mean photon number n=(b'b)=(c'c), in each
mode, as a function of the parameter |Z|. I also exhib-
it its deviation |{| — n from the semiclassical value |Z].
The antibunching properties of the generated field are
characterized in terms of g = ((b'26?) — (b'b)2)/
(b'5)? which is also shown in Fig. 1. This figure ex-
hibits the very striking quantum nature of the generat-
ed field.

I next examine the squeezing characteristics of the
output radiation. For this purpose it is sufficient’ to
find the variance in the operator

d=e #2(p+¢)/2v2+H.c. (16)

Here ¢ is the phase of the local oscillator used to mix
the output fields. Using Eq. (12) I find

(dy=—3S=L{n+5(Le *+e?)). A7)

Assuming that £ = |{|e®, it is evident that squeezing is
obtained if n+|{lcos(¢—0) <0, ie., if cos(¢—8)
<0 or w/2< (¢—0) <mw. Maximum squeezing is
obtained when ¢ —6=m. In Fig. 1 I have shown
S=|¢l—n, if $—0=1r, as a function of ||. It is clear
from the figure that one gets considerable squeezing
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FIG. 1. The mean photon number » (curve a), its devia-
tion |Z| — n from the semiclassical result, squeezing parame-
ter S(=|¢|—n) (curve b), and g (curve ¢) all as func-
tions of the parameter |{|. Note that || is related to the ra-
tio of the susceptibilities for four-wave mixing and two-
photon absorption. The scale for curve c is displayed on the
right-hand side. The actual scale on the x axis for curve ais
one tenth of that shown.

(e.g., the variance (d?) is 50% of the coherent-state
value over a wide range of { values) in the radiation
generated via the competition of ASE and FWM in
resonant two-photon excitations. It is also interesting
to note that the squeezing and the departure of the
photon number from the semiclassical result coincide
in this case. Thus, a good amount of squeezing should
be observable in resonant two-photon excitations in
vapors like Na and Rb in the limit of long samples by
changing the parameter { which can be varied over a
wide range by changes in the intensity and frequency
of the pump field as is evident from Egs. (3)-(5).

Finally, the amplified spontaneous emission is pro-
portional to the population in the state |1). The atom-
ic population in the state |1) can be obtained by con-
sidering an effective two-photon Hamiltonian

Heff= [MpEz(wl)+MGbC]|l)<3‘+HC (18)

Here M, (M) is the effective matrix element corre-
sponding to the absorption of two photons of the
pump (generated fields). These matrix elements are
related to X(3)(w1, —w;, ;) and x® (w3, —wy, w3).
Using Eq. (5) and the solution (12) for the field densi-
ty matrix, I have shown that the effective quantum-
mechanical field responsible for creating population in
the state |1) is such that all its normally ordered mo-
ments are zero, i.e.,

(IM,E*(0;) + Mgbc1"P[M, E*(w,) + Mg bc19) =0,
19

where p and q are positive integers. Note that (19) is
the property of the vacuum of a quantum-mechanical
field. Therefore, the effective interaction (18) in-
volves interaction with an effective field with property
(19) and hence no population is produced in thé state
[1); i.e., ASE is suppressed, which is in accordance
with the experiment.?

In conclusion, I have shown how the strong com-
petition between four-wave mixing and amplified
spontaneous emission in resonant two-photon excita-
tions produces radiation fields with striking quantum
properties like antibunching and squeezing. This sys-
tem produces new types of coherent states of the radi-
ation fields involving annihilation of photons in pairs.

I am grateful to the Science and Engineering
Research Council (United Kingdom) for partially sup-
porting this work, to R. W. Boyd for making available
the results of Ref. 2 prior to publication, and to G. P.
Hildred for help in producing Fig. 1.

Note added.— Since this paper was submitted I
learned, from Dr. J. R. Klauber and Dr. S. M. Barnett
to whom I am grateful, that the pair coherent states
have been encountered before in connection with the
Abelian charge, etc.!?
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