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New Photoelectric Ionization Peak in the Hydrogen Atom
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%e present here analytical and numerical evidence which establishes that, for highly excited hy-
drogen atoms irradiated by microwaves, a large ionization peak occurs at frequencies much below
those required for the conventional one-photon photoelectric effect. Indeed, we find that this ioni-
zation peak can, for suitable parameters values, be much higher than that of the usual photoelectric
effect, a theoretical prediction which is currently being tested in the laboratory. A striking property
of this ionization peak is that its frequency width is jointly determined by two independent effects:
the classical chaotic threshold and the quantum delocalization border.

PACS numbers: 32.80.—t, 03.65.-w, 05.30.—d, 05.45.+b

The cross section for one-photon ionization in the
hydrogen atom can be calculated by use of elementary
quantum mechanics and, consequently, its properties
are now quite well understood. For frequencies below
the one-photon ionization threshold, two or more pho-
tons are required to cause ionization and, for suffi-
ciently small fields, the probability of such processes is
much less than that for the standard one-photon ioni-
zation.

Qn the other hand, for large fields, several investiga-
tors' io have shown that strong excitation and ioniza-
tion can take place even for frequencies well below the
one-photon ionization threshold. Indeed, many au-
thors2 9 have noted that this ionization of the quantum
hydrogen atom occurs concurrent with the appearance
of chaotic motion in the corresponding classical atom.
This connection is quite reasonable since classical
chaos is known to yield ionization via a diffusion pro-
cess of the Fokker-Planck type; the correspondence
principle then permits (but does not require) us to an-
ticipate similar behavior in the quantum motion.

While rough agreement has been found between ex-
perimental results and the predictions of classical
dynamics, ' the validity of using classical dynamics to
predict quantum results is a theoretical problem in it-
self. Indeed, it is known that the quantum dynamics
for classically chaotic systems may predict behavior
which differs from the classical even in the semiclassi-
cal region. In particular, previous numerical simula-
tions of a quantum model for the hydrogen atom in
a microwave field have exposed a parameter range in
which no diffusive-type excitation takes place even
though the corresponding classical case does exhibit

diffusion.
For some time now, we have been conducting a ful-

ly quantal computer investigation of ionization
mechanisms in hydrogen using a model which in-
cludes continuum effects. Indeed, we have previously
established conditions under which classical chaos is
relevant to quantum dynamics. 4 In the present paper,
we announce a particularly striking result of our recent
studies. A detailed report will appear elsewhere. s

Specifically, we find that the hydrogen atom can exhi-
bit a large ionization peak at frequencies much below
that of the conventional photoelectric effect. As in-
cident microwave frequency increases away from zero,
appreciable ionization first occurs at the threshold for
classical chaos to, as expected, following which the
ionization probability increases extremely rapidly to its
large maximum value. As frequency continues to rise,
the ionization probability remains high until a strictly
quantal effect—the so-called quantum delocalization
border4 —is encountered at frequency co& above which
the hydrogenic electron can no longer mimic classical
diffusion. Above to&, the hydrogenic wave function
becomes locahzed precluding ionization. In short, a
frequency window of large-amplitude ionization can
occur in hydrogen at frequencies much below that of
the conventional photoelectric effect. No empirical
test of these predictions has yet been completed, but
such investigations are currently in progress.

Turning now to specifics, let us consider ionization
mechanisms for the hydrogen atom when a linearly
polarized monochromatic electric field induces transi-
tions from initial states having principal quantum
number no )& 1. For simplicity, we restrict ourselves
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e, = I/50~oii3, (2)

a chaotic excitation of the hydrogenic electron occurs
which obeys a diffusion law, where np denotes the
classical action of the initially excited state and where
cup cuno3 is required to be greater than unity. The dif-
fusion rate is given2 by

D = (gn ) /7 = 2e n3/(~p7 3n p) = 2e2n /pi7 (3)

where r =cut/2m is the time measured as number of
microwave periods and where din is the spread in the
classical action n at time 7. Since the diffusion coeffi-
cient given by Eq. (3) increases rapidly like n3, the
dispersion 4n becomes infinite in a finite time. 2 8 In
short, the classical electron ionizes in a finite time vD.
A rough estimate for ro has been obtainedz s under
the assumption that ~D is not appreciably different
from the time at which Lkn becomes on the order of no
The validity of this assumption clearly improves with
increasing np. With this assumption in Eq. (3) and
with the approximation of n by n p, it has been found
that

rD —~o"/eo. (4)
In closing this paragraph, let us discuss the reason why
we have required coo & I in the preceding Eqs.
(2)-(4). First, note that Eqs. (2)-(4) were calculated
under the assumption of a classical chaos arising from
the overlap of first-order resonances specified by the
equations co —sQ =0, 2 9 ~here ao is the frequency of
the monochromatic microwave field and 0 is the clas-
sical frequency of the electron. But if there is to be
full diffusion due to the overlap of all resonances
down to the lowest (s = I), clearly the microwave fre-
quency cu must be on the order of the electron's fun-
damental (or lowest) frequency 0, i.e., o& = 0.

to the study of very elongated quantum states having
parabolic quantum numbers ni=np —1, n2=0, and
magnetic quantum number m =0. Since to a good ap-
proximation these wave functions have nonzero values
only along the direction of the applied field, we are at
liberty here to treat the hydrogen atom as it if were
one dimensional, having the Hamiltonian

0= p2/2 —1/x+ex cos(o)t), x & 0,

where e and cu are the microwave electric field strength
and frequency, respectively, in atomic units. The vali-
dity of this one-dimensional approximation is due to
the small value of matrix elements for transitions hav-
ing b, n2~0. As a consequence, the atom remains one
dimensional during the relevant interaction times.
This important fact has also been verified in laboratory
experiments which produce such states and excite
them by microwave fields. "

Classical analysis2 9 reveals that for microwave field
strengths eo = en' larger than the critical value

Indeed, if we neglect higher-order resonances as well
as the width of this lowest first-order resonance, then
there can be no resonance overlap and hence no chaos
when co & Q. But from the unperturbed action-angle
Hamiltonian for the hydrogen atom, we have
0 = 1/n p3 .Hence under the above assumptions,
~ = no

3 provides the lowest critical value
( = no

3 ) of the microwave frequency at which chaos
can occur. In terms of cup, we have

OJO + Cdc 1

where co, co,„np3 is a normalized critical frequency,
approximately equal to unity, which we call the chaotic
threshold in frequency on the understanding that ep

must be greater than the critical value given'2 by Eq.
(2).

A recent analysis4 of the quantum behavior of the
microwave-driven hydrogen atom has revealed the ex-
istence of a critical field value e~, called the quantum
delocalization border, below which quantum effects
suppress diffusive excitation. However, for field
values ep above this border, the quantum excitation
proceeds in much the same way as the classical. The
critical field value has been shown to be given by

ep =
carpi /(6np)'i (cop ~ 1).

Notice here that for states having no~400~„as fre-
quently occurs in laboratory experiments, diffusive ex-
citation will occur only for microwave field strengths
above the quantum delocalization border given by

It is interesting to compare quantal diffusive ioniza-
tion with the conventional one-photon process. Ac-
cording to Goreslavsky, Delone, and Krainov, '3 the
ionization rate for the one-photon process is

—i I 7 2n 2/~13/3

This rate achieves its maximum value yp„given by
yp, = 34egno7i3, at the frequency threshold value
Gop clip no/2 On the oth. er hand, the diffusive ioni-
zation rate vD

' reaches its maximum [see Eq. (4)]
yD —ep at coo=co, « coq, . The truly striking result
here is not merely that the quantum diffusive ioniza-
tion occurs at frequencies low compared to the one-
photon threshold but that its rate is much higher,
namely

yD/yp —n p '/34 (8)

It is important to recall that the classical expression for
used in Eq. (8) is also the quantal expression

(since here the field intensity is above the delocaliza-
tion border) and that the rates given in Eq. (8) refer to
time measured in periods of the microwave field. In
terms of physical time t = (2m/ao) v, this ratio becomes

I,/I, —,'i'/17.
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At first glance, the dimensionless ratios of Eqs. (8)
and (9) might be expected to be equal until one no-
tices that both rates until one notices that both rates in
Eq. (8) are specified after the same fixed number of
periods but at two distinct frequencies, ~hereas the
rates in Eq. (9) are specified at a fixed time. From
these estimates, we see that, for highly excited initial
states, the diffusive ionization process gives larger ion-
ization probability than does the one-photon process.

We have checked the above predictions against nu-
merical solutions of Schrodinger's equation for the
model discussed in Ref. 1. In these computations, we
used a Sturm basis in order to account explicitly for
the continuous part of the spectrum. A detailed
description of our numerical technique will be given
elsewhere. s We now turn to a graphical presentation
of results with accompanying discussion.

In accordance with common usage in laboratory ex-
periments, we say that the hydrogenic atom has ion-
ized when it reaches a state having some large pre-
assigned value of the principal quantum number n = n

We let the symbol IVI denote the ionization probabili-
ty. In Fig. 1, we present our main results on the com-
parison between the diffusive and one-photon ioniza-
tion mechanisms at fixed field intensity eo, initial state
no, and physical time t. In this figure, the solid curve
was obtained from the quantum calculations, while the
dotted curve provides the classical predictions. The

much higher ionization probability for the quantum
diffusive ionization process vis r't -vi-s the one-phonon
process is striking. Moreover, the frequency of onset
for the quantum diffusive ionization peak is almost 2
orders of magnitude below that of the one-photon pro-
cess. %e perhaps should note that the classical results
were obtained by numerical integration of Newton's
equations of motion for 250 trajectories with the same
initial action no as for the quantum case but with the
phases chosen to be homogeneously distributed over
the interval [0, 2n ]. In this way, the classical calcula-
tion is made to correspond with the quantum computa-
tion. The frequency of onset for the new photoelectric
ionization peak is, as mentioned earher, given by the
classical chaotic border. The fact that the numerically
computed «i, in Fig. 1 lies below unity merely means
that the effect of higher-order resonances and the
width of the lowest resonance is not entirely negligible
here 12

In Fig. 1, for the range ~, ~cuo~~q= («oati) ~

[from Eq. (6)], the curves of ionization probability
computed for the classical and quantum hydrogen
atom are seen to be quite close thus verifying our ear-
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FIG. 1. ionization probabiUty IVI = g„&„-~e„~ vs field
frequency zoo after a time v = 40~0 which corresponds to the
same real physical time t for all frequencies. %e have set
no 66, &0 0.05, n =99. Crosses, quantum theory; circles,
classical theory. Notice that ~~ is here some~hat less than
n J2 because, in our definition of the ionization probability,
the contribution of states with n & n is also included.

log cv,
FIG. 2. Ionization probability for frequencies above the

one-photon threshold ~~ for parameter values similar to
those of Fig. 1. The crosses are the results of our numerical
quantum calculations. The straight line is not a least-
squares fit to the crosses but is rather the line given by the
theoretical quantum mechanical expression. The excellent
agreement with theory shown in Fig. 2 even at very large
frequencies validates our entire numerical procedure and
shows that the Sturm base takes into account the continuous
spectrum quite effectively.
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lier assertion regarding the effect of quantum delocali-
zation. For cua & ~„, however, quantum localization
occurs4 and the ionization probability drops sharply
below the classical prediction. Finally for the one-
photon region coo & aors„our numerical results are in
excellent agreement with theory as is seen in Fig. 2.
Indeed, this agreement provides a very good check on
our whole numerical procedure; specifically, it verifies
that the Sturm basis quite effectively incorporates the
effects of the continuous spectrum. Numerous results
similar to those shown in Figs. 1 and 2 have been ob-
tained for various parameter values, and they will be
reported elsewhere

In this Letter, we have provided numerical and
theoretical evidence for the existence of a frequency
window inside which a strong excitation and ionization
of hydrogen atoms can occur. The present high level
of experimental technique5 "'4 " encourages the
hope that this phenomenon can be observed in the lab-
OMtorp.

This article is but one product of a long-standing in-
ternational collaboration linking far-flung outposts in
Atlanta, Milano, and Novosibirsk. On this particular
paper, however, only Milano and Novosibirsk explicit-
ly appear on the by-line; nonetheless, knowledgeable
readers will likely appreciate Atlanta's contribution to
the final draft as much as the authors do themselves.
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publicly to thank R. Bonifacio, G. Mantica, L. Perotti,
and F. M, Izraelev for stimulating discussions, and to
express their warmest gratitude to G. Bellini and
A. Pullia for much kind assistance and generosity in
providing computer time, without which this paper
most certainly could not have been written. This work
was supported by the Consiglio Nazionale deiie
Ricerche, Italy.
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