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Trajectories of Strings with Rigidity
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Classical solutions of elastic strings (l.e., strings with actions which depend on the extrinsic cur-
vature of the world sheet) are studied to determine Regge trajectories. For open strings, our classi-
cal solutions are identical to those for the conventional Nambu-Goto action. Ho~ever, for closed
strings, new solutions give nonlinear trajectories that include finite-energy, static configurations.

PACS numbers: 11.17.+y, 11.60.+c

Polyakov' has recently focused attention on actions
for relativistic strings which depend on the extrinsic
curvature of the string's world sheet as embedded in
higher-dimensional space-time. Such "elastic" string
actions contain quartic derivatives and may appear in
effective actions of strings as a result of one's func-
tionally integrating out fermions. 2 Polyakov noted that
the inverted coefficient for the extrinsic curvature
action —the rigidity —is asymptotically free. These
perturbative renormalization effects had previously
been investigated in other contexts. For example, it
was known that lipid membranes with small surface
tension have their effective rigidity reduced for long
wavelengths because of thermal fluctuations in the
fluid in which the membranes are immersed.

Interactions which are sensitive to the extrinsic
properties of the world sheet's space-time embedding
will influence the compactification of extra spatial
dimensions. In addition to controlling a "crumpled
phase" of strings, ' these interactions should suppress
longitudinal kink/fold modes, and they may be a
desirable feature for Pomeron phenomenology.

In this Letter we explore the classical solutions of
the string equations of motion when rigidity terms are
present. We determine Regge trajectories which
represent the J (angular momentum) versus E2 rela-
tionship for the classical string solutions. For the open
string, the lowest-energy motion is the usual straight-
line, pinwheel motion familiar from the conventional,
pliable, Nambu string. Extrinsic curvature vanishes
for these motions. However, for the closed string
there is another motion which supplants, for lour J
values, the standard folded-over pinwheel rotation of
the Nambu string. This new motion is the rotation of
an oblate closed loop, which reduces to a circle in the
static limit, ~ith finite energy at J = 0. For J&0, the
rotation rate for this string configuration first increases
and then slo~s dovrn again as F. and J increase mono-
tonically. For very high J values, the configuration
elongates, and as to again goes to zero, a limit of two
infinite, parallel straight lines (with infinite energy) is
approached.

Recall the Nambu-Goto "area-law" action in
second-order form:

li ———To JI d g4 —g, g,b
= a, X"abX„, (1)

where Tct is the tension, g' (a, b =0, 1) are the world-
sheet parameters, and X" (p, =0, . . . , D —1) are the
space-time string coordinates. The corresponding
equation of motion is the covariant wave equation

Tod —g X"=0,

a X~= g'bD. D,X~

= (I/O —g )a, (4—gg" a,x").
Since Ii depends only on the metric g,b of the world
sheet, it is sensitive only to the intrinsic geometry of
the sheet and is impervious to the extrinsic curvature
of the sheet. Thus, for example, I i does not distin-
guish between flat and corrugated sheets.

However, one may contemplate' 3 strings with in-
teraction terms depending on the derivatives of the
sheet tangents (vielbeine), a, X", through the second
fundamental form: E,'b ——n'„a, abX". Here n„' are
the D - 2 unit normals to the sheet: n~rt J~ = 5J
n' a,X&=0, i =1, . . . , D —2. In general, the
Gauss-Weingarten formulas give the complete gra-
dients of the vielbeine,

a, a,x.=r:,a,x~+&.', n,',
including the components tangent to the sheet, as in

I;bg,d =a, abXt'adX„. The gradients of the normals
also split into corresponding components: a, n„'

= —(n'„a, n'") n'„—K,'bg~ a,X„Using these rela-.
tions, we rewrite the covariant wave equation (2) as

a X& = g'bE.'bn'I'.

The new extrinsic-curvature-dependent addition to
the action is

1,=S,JI a'gd g( X~)'—
5' J d2g J g (gQbKl )2'

The coupling 50 is called the "rigidity, " since it op-
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poses curving of the world sheet in the envelope
space-time.

The action for the elastic string is the sum I
&
+ I2, or

I = S—, d'g 4 g—[1/~,' —(oX~)'], (6)

I = -S, d'g~x ~(1-K')'t' X X

, (1 —X')'

Ap2 =Sp/Tp, where we have defined a radius Rp. (Sp
is dimensionless, while Tp is not. ) By construction, I
is world-sheet-reparametrization invariant.

We now consider classical motions of the string.
First we establish a lemma. Since I2 is quadratic in
OXi', solutions of the covariant wave equation for the
Nambu string, (2), receive no modifications from I2,
including boundary conditions, provided that the
metric is nonsingular, since additional derivatives of

gaP 0
while the action becomes

X' X'
X' (1 —X )

—K' X''

g,b and UX& appear in the wave equation resulting
from J.

Lemma. —All nonsingular classical solutions for the
Nambu action are also solutions for I, with the same
values for conserved quantities.

For convenience, we henceforth w'ork in the time-
like orthogonal gauge exploiting world-sheet repa-
rametrization invariance to choose

XP=gP, K K =0, (7)
where Xi'= (Xp, K), X= tix/tlap, X' = BK/Bg'. In
this gauge, the sheet metric reduces to

t

1 —X X 0

X XX' X' XX X
(1 —K') X'(1 —X') (1—X')'

X" X'X' X" X'X X'
X' X' X'(1 —X')

J= dL/dred, E = a)J —L.

It is straightforward to verify that the open-string
solution of the Nambu action, the rotating "pinwheel"

motion, ' is also a solution of the equations of motion
resulting from (9), and that it satisfies the same boun-
dary conditions at the ends of the string. The lemma
holds without qualifications:

K=('e, —1/cu ~ g' ~ 1/cu (open string), (11)

with caco and c=co xe. The ends of the string there-
fore move at the speed of light, as for the Nambu
string. The Lagrangean, energy, and angular momen-

The simplest string motions to consider are uniform
"rigid-body" rotations about a fixed axis, pi, with an-

gular frequency cu. The Ansatz for such motions

(co = a&ru ) is X = pi & X, X X = X X = X' X' = 0, X
=cozX2 ru X2—. The action then simplifies to an ex-

pression linear in the time: I =tL, where t= f dip.

The angular momentum also simplifies considerably
for such uniform motion since 8K=X/cu. In fact,
when the configuration of the string lies in a plane to-

gether with the axis of rotation, J is simply dL/des
For such a rotating configuration, the energy also
reduces to the standard Legendre transform of the ac-
tion. Thus

turn are given by

L = —7r Tp/2(u, E = m Tp/cu,
(12)

' 2'
1 cu r COSe[r COSe+ (dr/de) Sine]

[r + (dr/d e)']'I'[1 —(u'r' cos'e]

J = n Tp/2piz=E2/2mTp.

Thus classical Regge trajectories for these open-string
configurations are linear with slope (2m Tp)

For the closed-string case, however, the folded-over
straight-line configuration (which extremizes
Nambu action and gives a Regge trajectory with half
the slope of the open-string case) is not a solution.
The above lemma is obviated in this case by the
creased ends of the straight-line segments where the
metric is singular. If the ends are rounded out slightly,
with a radius ~, the rigidity term I, contributes 0 (1/&)
to the total action' [near the folded ends the Lagrange-
an goes like ~ f dool(cr + e ) -]. Consequently this
configuration for the closed elastic string is not a clas-
sical solution as E 0.

The actual, planar, classical solution for the rotating
closed elastic string is easy to visualize since it has a
nonrelativistic limit, unlike the Nambu string. It
resembles an ellipse rotating about its minor axis. In
this oblate hooplike configuration, the rigidity and cen-
tripetal acceleration balance the string tension. %e
may parametrize the solution by working in the plane
of the hoop, defining r to be the distance from the
center of the hoop, and 8 to be the angle from the ma-
jor axis: X=(r(e)cose, r(e)sine). With this pa-
rametrization, the Lagrangcan for the hoop Ansaiz
reduces to
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where « is the curvature for a planar curve,

1 —(d/d8)arctan(r ' dr/d8)
[r'+ (dr/d 8)']'t'

Now it is easy to determine the static (c0 = 0) solution for the hoop:
2 &/2.

dr ' 2K 1
L (co=0) = —Soj d8 r2+ + K

de 8,

(14)

(15)

Etc = 4n NS0/R 0 = 47r N (SoTo) 't 2. (16)

For the nonstatic (coc0) case, we do not have simi-
lar topological/geometrical arguments to obtain the
classical solution. First, we performed a small-cu per-
turbative analysis by substituting a Fourier series ex-
pansion for r (8) and then varying the coefficients to

The first term on the right-hand side (RHS), linear8 in

gives a topological invariant (Hopf's circulation
theorem for closed planar curves6), which is clear
from the explicit form for « in (14). This term counts
the number of times N the tangent to the curve rotates
through 2n as the closed string is circumambulated.
The second term on the RHS of (15) is obviously ex-
tremized (0) for a constant « = 1/Ro. This means that
the static hoop forms a circle of radius r =Ro. For
such a circle, wound W times with string, (15) immedi-
ately gives the action, and energy since E= —L (cu
= 0) in the static case:

J = [—,Ro (E —16m W SOTO)]' + 0(c0 ) (19)

We have numerically investigated the large-~
corrections to the trajectory segments specified by
(19). For this purpose it is convenient to change vari-
ables from 8 to a modified angle @. Define

extremize L. The result is

r (8) = R0 [ 1+~'Ro [1 + —', cos(28) ] + 0 (cu ) j.
(17)

Thus a slow rotation stretches both the major and
minor axes. Substituting this result into L, and

evaluating thc angular momentum and energy, we ob-
tain

cuJ = 67r NSOR Oco + 0 (cu ),
(18)

E = 4n N(SO/Ro) [1+—,
' co2R02 + 0 (co4) ],

which is not surprising for a nonrelativistic rigid-body
rotation. The resulting Regge trajectories are non-
linear for small cu..

(21)

where we have assumed a reflection symmetry for the solution (u —u, g —g). The angular momentum and
energy for the Ansatz are again given by (10). Varying g in L leads to the Euler equation

u =cosct, ct =8—arctan(r 'dr/d8) = jt d8[r2+(dr/d8)2]'t'«. (20)
0

Clearly, u =1 (@=0) corresponds to a point on the hoop which lies on the major axis, while u = 0 (ct = n/2) cor-
responds to a point on the minor (rotation) axis. We also switch to a dependent variable g, which is the distance
from the axis of rotation. Using (14), we have g = r (8)sin8, dg/du = 1/«. With these variables, the Ansatz rotat-
ing hoop system is described by the Lagrangean

1/2 ' 2'

1 —cu g2 1 1 cv QgL= —4SO du — + «—
I Q K Ro 1 2g2

c

d o) ug u 1 1 2 c0 ug2 2

K "+
du 1 —cu g 1 —u «Ro 1 —co g

which is a second-order, nonlinear equation for g (u ),
since «= (dg/du)

We solved Eq. (22) numerically as a boundary-value
problem. Starting with g(u =0) =0, we integrated to
the most rapidly moving point on the hoop, at u = 1,
where we required the boundary condition that d«/du
remain finite. This required the numerator on the
right-hand side of (22) to vanish. Alternatively, we
calculated the action (21) as a function of an initial
curvature «(u = 0), with g (u = 0) = 0, and found the
extrema. The two results agree within numerical un-

(22)

certainties, although the latter action method appears
to be better.

The results for the trajectory are shown in Fig. 1.
For the same cu, there are in fact two cxtrema of L,
and hence two classical solutions. One branch of solu-
tions originates with the static circular hoop and
develops for small co as described above in (17), (18),
and (19). Both E(co) and J(cu) increase monotonical-
ly for this branch up to a critical value su, ( = 3.5/To,
for So ——1). At this critical value the action, con-
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FIG. 1. The leading (N =1) trajectory for SO= I (solid
line) and for So=0 (dashed line). Arrows indicate increas-
ing cu.

sidered as a function of n(u =0), has an inflection
point. The trajectory continues to higher E and J
values through the second branch of solutions to (22),
allowing ot to decrease back to zero.

The branch of solutions giving the upper segment of
the trajectory behaves somewhat similarly to the
motions of the Nambu string. As ot 0, the major
axis of the hoop grows as I/ot, and the trajectory be-
comes linear. Unlike the Nambu closed string, howev-
er, the ends of this configuration are not sharp folds.
The elastic energy stored in these ends displaces the
trajectory to the right of the Nambu straight-line tra-
jectory, as shown in Fig. 1.

As energy and angular momentum are pumped into
the system, both the major and minor axes of the con-
figuration grow, although the ratio decreases to zero.
Correspondingly, the edges of the hoop farthest from
the axis of rotation move with increasing speed. This
increase continues smoothly from the lower-branch
trajectory into the upper one, except that on the upper
branch the growth of the edge speed lags the growth of
the major-axis length. The critical frequency
represents the maximum frequency attained by the
solution. Since ot =dE/dJ, the critical point ot, also
represents an inflection point with d2E/dJ2 = 0.

As So is decreased, tending to the limit of the pliable
string (So——0), the E intercept of the trajectory
moves toward the origin. So does the critical point, so
that only the upper solution branch survives. This
reduces to the straight-line trajectory which character-
izes the Narnbu string.

To summarize, for the closed-string sector, the tra-
jectories are nonlinear and are dominated at low ener-

gies (short strings) by the novel hoop configurations
discussed above. At higher energies (long strings),
the relevant configurations exhibit more conventional
Regge behavior, although classically they lack the
sharply folded ends of the Nambu string because of
the rigidity which discourages bending of the string.

This system must be quantized. Upon quantization,
we expect a shift in the vacuum energy and some
modifications of the low-energy spectrum. However,
since the lowest-energy state of the classical closed
string is an adjustable parameter [as in (16)], we ex-
pect at least for some range of Stt that there will be no
massless states for the quantized rigid string, and
hence there will be no graviton in the model. This
raises an issue of general covariance in the embedding
space-time. Finally, the analytic continuation of the
nonlinear trajectories to negative J and E, together
with the resolutions of the intercepts of the sister tra-
jectories [described classically in (16)], may have in-

teresting implications in hadronic applications of string
theory. It is also interesting to explore the relationship
of the nonlinear trajectories presented here have with
those described in the earlier literature. cwork on
these questions is in progress.
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