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%e extend an existing Bose-Fermi equivalence formula to two-dimensional Euclidean space-
times ~ith arbitrary compact topology. The result relates the nonchiral Dirac partition function to
that of a scalar field, times a theta function. The proof is a short application of methods from com-
plex geometry and Quillen's determinant constructions.
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Two-dimensional field theories exhibit so many
bizarre and amusing special features that at times they
seem not to be field theories at all, but rather some-
thing simpler and more algebraic. At the classical level
we see this in the trivial observation that in Minkowski
space-time massless particles divide into left and right
movers which do not mix, even in the presence of
background gauge fields. In Euclidean language this
becomes the statement that the wave operators for
fields of any spin are Cauchy-Riemann t) operators.
Zero modes of such operators, for example, are analyt-
ic functions on space-time X, or more generally holo-
morphic sections of some bundle on X.

In the past few months, however, a much deeper
connection to complex analysis has emerged at the
quantum level. This began with the paper of Quillen, '

and has continued in other works, of which we cite
some examples. 2 ' Some of these papers were con-
cerned with string theory, but the techniques apply to
two-dimensional (2D) field theory in general.

Quillen observed that usually we are interested not
in a single wave operator t) but in a family of such
operators, and that frequently this family depends
holomorphically on some complex parameter space, so
that complex analyticity plays a double role. For ex-
ample, the gauged scalar operator 2) „—= t), + A,
depends on the complex vector potential 2, = A i+ iA2
but not on A, . Quillen showed that this second analyt-
ic structure can survive after quantization. Powerful
tools from complex geometry are then at our disposal
to help investigate these quantum theories.

The main point of this Letter is to give an example
of such tools at work. We will prove a formula for the
Dirac partition function which was derived under
the assumption of bosonization by Alvarez-Gaume,
Moore„and Vafa. s When we turn this around, the
present derivation provides a rigorous justification for
spin- —, bosonization on surfaces of arbitrary compact
topology. This relation also provides one of the steps

in the general bosonization proof announced in an ear-
lier work. s The key principle we will use is the well-
known fact that on a compact complex manifold the
only global analytic functions are the constants. To
show that two things are equal up to a constant we
thus need only show that they differ by an analytic
function. The steps we actually take will rely on some
complicated constructions, but these are used only to
maneuver us into position to apply the above simple
observation. Many more interesting identities needed
in string theory and elsewhere can also be proved
along these lines, s in particular by use of the deep
methods of Quillen' and Faltings. 9

Recently Friedan, Martinec„and Shenker have also
obtained bosonization results from a different ap-
proach. '0 Analyticity also plays the key role in the re-
cent paper of Friedan and Shenker. "

Bosonization. —Bosonization refers to the complete
quantum-mechanical equivalence of a Bose field
theory with a Fermi theory, and in particular co a map-

ping between all the observables of the two. Here we
will consider the less ambitious project of showing that
a Fermi partition function when summed over spin
structures equals that of a Bose theory'2:

ZBose ZFermi ~

spin str.

Both quantities are functionals of a given background
two-metric, and so we do have something very non-
trivial to check.

Specifically, consider a single boson with values in

the circle U(1), on a compact surface X with a fixed
number of handles g. This field can wind various
times around the 2g noncontractible loops of Euclide-
an space-time, and we know that to get a Fermi
equivalence we will need to sum over all possible
windings, i.e., all instanton sectors. To prove Bose-
Fermi equivalence, we will quote an expression for the
Bose partition function, derive another expression for
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the Fermi system, and note that they are the same.
In Ref. 5 the instanton-sector sum for the Bose theory was done carefully, yielding

&/2det'8'8
det(cu', cuJ) f Wg

(2)ZBose g e (oI.) .

Briefly the notation is as follows (see Ref. 5 and Mumford'3): We have chosen a slice, that is, a representative
two-metric g on X for each gauge-equivalence class of metrics. These are parametrized by a finite-dimensional
space of equivalence classes, the "moduli space" JII of surfaces of genus g. For each metric, jJg is the corre-
sponding area of X. We have also chosen a reference set of 2g noncontractible loops on X These define (i) local
coordinates r,j for At analogous to the one complex parameter 7. on a torus; (ii) a preferred basis ~,', . . . , cog of
holomorphic one-forms on X, whose inner products we have taken; and (iii) a Riemann theta function 8. The vec-
tors (ei, e2) run over a discrete set of 4g points, generalizing the four different 8 functions on a torus, where g = 1.
After this sum is performed (2) is modular invariant.

The functional determinant in (2) has periodic boundary conditions. All determinants are understood to be $-
function regulated.

On the other hand„ in Ref. 5 it was also proved that for a single Dirac fermion with fixed boundary conditions
(spin structure) one has

Here ~i, ~2 describe the spin structure. c is some function of the background metric independent of ~i, e2.
Equations (2) and (3) are certainly compatible with the bosonization statement (1). Indeed (1) says precisely

that (3) can be refined to5

ld«(8 8 ).. .,]'= det8 8
det(~', ~&)I Jg

We will prove (4), and hence in particular (1)„up to
an overall multiplicative constant.

Equation (4) is very plausible. It is exactly true on
the torus. ' Another check is that the anomaly we get
when we vary the metric slice is the same for each
side. ~ Even though anomalies are local on the world
sheet, and so seem insensitive to the global topology,
we will see how this observation is crucial to extending
(4) to arbitrary genus.

Proof of (4).—Quillen's essential construction in-
volved a line bundle over moduli space P with a spe-
cial metric, which we will briefly recall.

The family of operators 8 takes functions on X to
(0,1)-forms. It depends parametrically on the complex
structure we have chosen for X, i.e. , on At . We will
need two key facts about ~:

(a) His itself , a connected complex space, and 8
varies holomorphically (see the review by Bers'4).

(b) For genus g & 2 any globally defined analytic
function on A. is constant. " In this sense, At is "al-
most compact.

" This comes from the fact that At can
be embedded into a compact space At by adding a set
of points of complex dimension less than
(dimM) —1. Roughly speaking this means that any
analytic (or pluriharmonic) function on IK extends to
the compact A, and so is constant. '6

While these two facts are hard to pmve, they are

easy to apply. They are at the heart of the simplicity of
2D field theory.

We are interested in operators like 8 or 8L which
map from one bundle to another. Such a family gives
rise to a determinant line bundle DET8 over P, '~

whose fiber over any point X 6 JiI, is the vector space
h '"(ker8) ' 8 h '"(ker8 ). The inverse refers to
the dual line bundle. In the present setting this bundle
is holomorphic. "s

Similarly we obtain DET8q, with one new feature:
We must now replace At by the space S of Riemann
surfaces with spin structure. Since (3) is trivially zem
for some spin structures (the "odd" ones5), we will
consider only the remaining "even" ones. Then S is
a covering space of ~, for which properties (a) and
(b) continue to hold. We will trivially lift the 8 family
to S as well in order to compare it to 8L.

We thus get a family of spin bundles X over g . By
defirution X is a square root of the cotangent space 'T,
in the sense that over any surface X, "T =—L' S X .
We also have that the left-handed derivative 8L is just
the 8 operator coupled to X, i.e., 8L =8~ takes sec-
tions of 2 to spinors of the opposite chirality, in
7@X.

The index theorem for families lets one compare
various determinant bundles, just as in the analysis of
chiral anomalies. '7'9 In our case an easy verification
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shows that

(DET5„) 2=(DET5)-'. (5)

The computation is the same as the one which shows
that the anomalies match in (4).20

As it stands, (5) is of no use in proving (4), since it
says nothing about functional determinants! The DET
bundles are simply built up from zero modes of 8~, t),
and their adjoints. Quillen introduced determinants
into the game by defining a metric on a general DET
bundle. For example, if co,', . . . , co~ are a basis of
holomorphic one-forms on X then co-,

' span the kernel

of t) . Also the kernel of 8 just contains the constant
function $0(x) —= 1, so that a —=@0

' 8 (m' h hm~)

is a vector in DETB. (The inverse refers to the dual

section. ) Declare its norm to be

'I I' det'5'5,

where on the right we use ordinary metric norms.
Thus,

ll~llq'=(„Wg )-'det( ', J)det'5 5. (6)

On the other hand, the Dirac operator usually has no
zero modes at all. The highest exterior power of trivial
vector space is just a copy of the complex numbers C,
so we can consider the section s which for most X
equals 1 6 8 . For this section we then have

III I I&
——det'5„'5 .

Quillen showed that (6) and (7) make sense every-
where. Furthermore, his norm has the remarkable
property that isomorphic bundles given by the

Riemann-Roch theorem, such as (5), actually have the
same curvature in his metric connection. ' ~

We thus have a pleasant confluence of the
mathematical desire to introduce good norms with nice
properties, and our own need to say something about
field theory: Quillen's norm accomplishes both. If we
can show that the isomorphism 1 in (5) is an isometry
then we will relate the two partition functions. Al-
ready we can see that (5) has the correct powers to
give (4).

To establish the isometry, use the fact (b) above
that spin-moduli space & is "almost" compact. Given
any section s of DETB~ we know that the curvatures
&5loglls slip and &5logll1(s s) llg agree.
Thus lls 8 sllg and II1(s 8 s)Ill~ must themselves
agree up to an analytic function, 2' and so they agree up
to a constant. A similar argument shows that in fact 1
itself is unique up to a constant, since any other I' is of
the form fl, for an analytic function f.

We now know that (5) is an isometry, and so to fin-
ish the proof of (3) we need only find the explicit
form of the isomorphism I. This can be found, for ex-
ample in, Sect. 6 of Ref. 9. The idea is that given a
section s of DETB~ we can multiply it by a Riemann
theta function, which vanishes exactly when det8& 8L
does. This almost suff&ces to make sH an ordinary
function on g, but now we have introduced a depen-
dence on the basis cu' of one-forms used in 8. Faltings
notes that this dependence is just right to make (s0)2
actually transform like (co'~ ~~~) ', and so it
gives a section of (DET t))

For example, consider again the section s = 1 of
DET5& when BL, has no zero modes. Then the precise
formula in our notation says that

1

1(1 8 1) = 8 (Olr) det(cu', o)')@0 8 ((o'A Ao) )

where et, e2 label the spin structure and again @0 is just the constant function on X. Since we know that
lls 8 sl I~2= III(s 8 s) llg2, we collect (6)-(8) and recall that 5~=8L to obtain

[det(a, a, ).. ., I' = det't) t)

det(cu', &)J,Jg
as was to be shown.

In fact we have only shown (4) up to a multiplica-
tive constant Kz which could depend on the genus. In
a string theory, where we work with various different
genera, it may be possible to relate all of the Ez to the
known Kt = 1 by letting the Riemann surface Xdegen-
erate.

Remarks. —Actually in Ref. 5 the authors proved
something stronger than (3): They gave the fermions
arbitrary twists, then found that (3) still held with

not necessarily at the 4~ places describing
untwisted spin structures. It is not hard to generalize
our discussion to give the corresponding extension of

(4).
It is important to have bosonization formulas which

apply to spins other than —,', in order to get at the ghost
determinants of the superstring. ' In Ref. 8 the ap-

proach of Refs. I and 9 is used to relate the deter-
minants of 8 coupled to quite arbitrary bundles.
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