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Exact Solution of the Rabi Hamiltonian by Known Functions?

H. G. Reik and M. Doucha
Fakultdt fiir Physik der Universitdt, D-7800 Freiburg, Federal Republic of Germany
(Received 12 March 1986)

It is conjectured that the component wave functions of the Rabi Hamiltonian in Bargmann’s
Hilbert space are terminating series of spheroidal wave functions and generalized spheroidal wave
functions of Leitner and Meixner. Numerical calculations strongly support the conjecture.

PACS numbers 03.65.Ge, 02.90.+p

The Rabi Hamiltonian has isolated exact solutions possibly known expansion functions, which allow for
for particular values of the interaction constant.! In terminating expansions of the wave functions in the
Bargmann’s Hilbert space of analytical functions?=* the general case. By applying these principles (and a fair
component wave functions are, in this case, terminat- amount of intuition) we have in fact been able to
ing series of elementary transcendental functions.!>~’ guess the expansion functions and the expansion. We
This property is due to similarities in the pole structure are, however, unable to produce a mathematical proof.
of the differential equations defining the expansion However, we have a vast amount of numerical evi-
functions and the differential equations of the com- dence, which, without any exception, supports our
ponent wave functions for the particular values of the conjecture.
interaction constant. We asked ourselves whether this The Rabi Hamiltonian in Bargmann’s method"* is a
observation could be a guide to more complicated but linear first-order matrix differential operator,
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H=¢d/dé+ 5+ (F+28)0,+V2k(E+d/dE) (o4 +a(_)), (1)
whose eigenvalues A; in the excited state i (i=0,1,2 ... ) are determined by the requirement that the up and
down components of the wave functions
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(m= ++) belong to the space of entire functions. We introduce a new independent variable z = ;—gz, insert (1)
and (2) in the Schrédinger equation, and collect the spin-up and -down components. We then obtain the following
system of differential equations:
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Here
Ni=2¢+1=v,+3— 22 (5)
and v; is the baseline parameter introduced by Judd.® For m = — & Egs. (3) and (4) are identical with (2.28) and

(2.29), for m = + 5 with (2.28a) and (2.29a), of Ref. 1. Equations (3) and (4) have an irregular singularity at in-
finity and two regular singularities at z =2 (exponents 0 and v;) and z=0 (exponents 0 and — ;—). Therefore,
this singularity is elementary in Ince’s classification.’

The conjecture is that the functions ¢ ™ (z), £,{™ (z) can be expanded in i +4 solutions wid (j,o;A5z) of a

second-order differential equation with the same location and character of the singular points. The differential
equation is given by
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where the parameter dependence of the functions is suppressed. The function w43’ (j, v;A;z) has first been treat-
ed by Lambe and Ward'™!!; the transformed function ¢(n)%/ *V2(1—5?)""2w{® (i, v;A;k?y), k'ni=z is a
generalized spheroidal wave function (Leitner and Meixner'?). For j = — —; the regular singularity z =0 becomes
elementary and (n) reduces to a spheroidal wave function.!>-'® As we shall see [Eq. (16)], all but one of the ex-
pansion functions are of the simpler type. We call the solutions of (6) the natural expansion functions for the
solutions of (3) and (4). We are now going to study the relevant properties of the natural expansion functions, in
particular their eigenvalues A,, which show a simple x? and v dependence.

We expand the function wi>) (Jj, 7;A;z) in series:
C,(j,v;A)

wid (j,v;A;5z2) ="§0 e wi2 (j—niz), (7
wiD (= nmz) = (k2z) ==y o (2k2\?) (8)
— (22)=T=m (fz)f | ©)
k=0 T(k+DT(—=j+n+k+1)
Insertion of (7) in (6) leads to the recurrence relations
—Co1 G M) + GG, M (=) (n+1=3) + A} + GG, 5;A)k*n (n =) =0, (10)
which can be turned into the form
Cu(ji03A) —k*n(n =)W,
CoiGoA) =D ntl-D) A~ (an
Here W, is a continued fraction given by
W,=1/(1+a,W,,,), (12)
a, *(n+1)(n+1-7) (13)

TNt A1 =D (n+2-D) + Al

Equation (11) determines the eigenvalues A,; see the
dotted curves in Fig. 1. For k2 < 1 very good approxi-
mations A ,‘,0) are obtained by putting the wavy bracket
in Eq. (10) equal to zero. One has

A =—(n—j)(n+1-9), (14)

o
|
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which explains the labeling in Fig. 1.

For all integer values of v, terminating expansions 0
(7) can be found. E.g., for v=1 and W, finite,
C1(j,1;A)=0 from (11) and A=0 from (10) for
n=0. For v=2 and W, finite, W;=1 from (12) and
(13), and C,(j,2;A) =0 from (11) for n=2. Further-
more, from (11) for n=1 one has C;(j,2;A)
=k*A"'Cy(j,2;A) and Eq. (10) for n=0 gives 10
Ci(j,2;A) =+ (j+A)Cy(j,2;A). Equating the two
expressions leads to

AA+))—=k*=0, (15)
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whose two roots determine the eigenvalues for which 20
the series (7) terminates. Similarly for v=N, Nth- ot 0 >
order equations for A can be derived whose roots cor-

respond to expansions (7) for which Cy=Cy4;=0; FIG. 1. The eigenvalues A, of (10) vs v for

see full circles in Fig. 1. These expansions are isolated
exact solutions of (6) of the type discovered by Judd?
in simple Jahn-Teller systems.

In the following we concentrate on ¢~ 2 (z), Eqgs.
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xk?=2.50308150222239, j= — % (dotted curves): full cir-

cles, eigenvalues for terminating series (7); open circles,
eigenvalues for the first five expansion functions in (16);
i=2 (second excited state).
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TABLE 1. The expansion coefficients x; and eigenvalues A; in expansion (16) for
5=1.5, k*=2.503081 50, v=1.589, second excited state i = 2.

[ X 1'\[

0 —6.07512878179273594x 10~* 1.565573499507 16875
1 —2.64895177856137854x 107! —3.237791 500337 626 82
2 1.31261568192832504x 107! —7.15232182527841063
3 —1.89443212091631814x10¢ —11.8810577811305610
4 1.134243017003 60553 —5.017451414696 186 40
5

—2.191049 502676 856 64x 10~* —8.025333 56052103738

(3) and (4). According to the conjecture the function ¢~ ) (z) is a terminating series of i + 4 natural expansion
functions whose first i + 3 are spheroidal wave functions:

i
¢!~V (2) = 21 Wi (=5, viA5z) +x0w3 ) (— 5, v+ LA 52) +x,43w3 ) (— 3, v3A52). (16)
1=0

The choice of the natural expansion functions is indicated in Fig. 1 for i=2, v;=1.589. In order to test the con-
jecture we expand ¢~ Y2 (2) alsoin wi? (—+ —n;2),

e A
o[ 7@ = ¥~ wi? (=3 —ma). an

n=0 n'k

From (3) and (4) we obtain a three-term recurrence relation for 4,

—Apg1+ A (n+ ) (n+1=v)+ L (W)} +A,_*{n(n—1-v)R(n)}=0, (18)
Ln=—-51-v) =¥ (1+v)+(v/2—++8)(v/2—F-8) —«*(v/2+ 2+ +8)0(n), (19)
R(n)=0(n)+1, (20)

(v/2—n+8—F}{v/2+8+ 3} +x2(n+1)

O(n)=
(v/2—n+14+48—F{v/2+8+2) +«?n

(21)

Note that O (n) does not depend strongly on n, and lim, — ,, O (n) — 0. The similarity between the recurrence re-
lations (18) and (10) is obvious; this is a consequence of the similarities in the pole structure of (3) cum (4) and
(6). From (16) we have the following relation between the expansion coefficients:
i+1
Ap= 3 xCo(= 5, vA) + x42C, (= v+ LA) + x4 3G, (— 3, v:A,) nk?, (22)
=0

where A, A; are eigenvalues of (6) referring to the I
parameters in front of them. Now we insert (22) in the expansion coefficients 4, of (17). On the other
(18) and take proper care of (10). By this a lot of the hand, we calculate x? and A4,, directly from (18)-(21).

n dependence in the coefficients of 4,,4,_, drops out Here the conjecture (16) is not used. The calculation
and we obtain a system of equations for x;:

i+3 . . 5 .
W — — TABLE II. The interaction constant «* as function of v
,go Xy 0, n=0,1,2.... (23) for second excited state i =2, 8= —1.5.
The lengthy expressions for I'{? will not be repro- v K2
duced here; they can be easily obtained from 2.056 0.250015286 404 49|
(18)-(22). We just mention that I'{” still contains A, 1.804 0.500 023 440 100 82|
C,(G,viA,), and Cy_, (J,v3A,). 1.648 0.749 870230 364 32|
We take the first i +4 equations (23), fix 8 and v, 1.553 0.999 80037724948
and put the determinant equal to zero. This deter- 1.501 1.254 569917 844 27|
mines «? [and, at the same time, A; and C,(j, v, A;)]. ig?i ig;gé%g;;i ﬁ(g)(s)ggi
The equations are then solved for x; (see Table I). We 1589 2503081 502 222 39|

check that the coefficients x; also satisfy the rest of the

: h 1.663 3.0001011773933|5
equations (23). Finally we use Eq. (22) to calculate |
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TABLE IIl. The coefficients of the expansion (17) and
check of Eq. (22) for v=1.589, «?=2.5030815022239,

second excited state i =2.

n A,/ nlkn
0 1.000 000 000 000 00|
1 —1.06113237028202]
2 4.11176037620240|x 10!
3 —5.824865074499 56| x 10?2
4 9.109051532773 71| x10-3
5 —1.28573402542121|x 1073
6 1.617913072702 69| x 10~*
7 —1.8247471256523]2x10"°
8 1.8595476106311/9x10-¢
9 —1.7259551331955|7x 107
10 1.4696020814180]4x 108
11 —1.155269107016/96 x 10-°
12 8.43157599059|711x 10~ 1!
13 —5.741338893177|65x 1012
14 3.663391065709|51x 1013
15 —2.198839714723|83x 10~ 14
16 1.245770002 720|64 x 1015
17 —6.682756299512|77x 10~V
18 3.403719564601]61x 108
19 —1.650155474485|12x10~1°
20 7.63241880069|515x 102!

is by standard continued-fraction technique.

The entries in Tables Il and III are the results of this
calculation which are accurate to fourteen decimal
places. The vertical bars indicate the position up to
which there is agreement between the results of the
two methods. This and a lot of further data show that
the conjecture must be true: The solutions of the Rabi
Hamiltonian in Bargmann’s Hilbert space can be ex-
panded in / +4 natural expansion functions. The first
i+3 expansion functions are related to spheroidal
wave functions, while the last is related to the general-
ized spheroidal wave functions of Leitner and
Meixner. All our calculations have been done for
low-lying excited states /i=2. Numerical work by
Graham and Héhnerbach!® and numerical and analyti-
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cal work by Klenner, Weis, and Doucha?® indicate that
the highly excited states might be simpler than expect-
ed. The recent discovery of a scaling law?! in the
large-i limit points in the same direction.
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