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Exact Solution of the Rabi Hamiltonian by Known Functions~
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It is conjectured that the component wave functions of the Rabi Hamiltonian in Bargrnann's
Hilbert space are terminating series of spheroidal wave functions and generalized spheroidal wave

functions of Leitner and Meixner. Numerical calculations strongly support the conjecture.

PACS numbers 03.65.6e, 02.90.+p

The Rabi Hamiltonian has isolated exact solutions
for particular values of the interaction constant. ' In
Bargmann's Hilbert space of analytical functions2 4 the
component wave functions are, in this case, terminat-
ing series of elementary transcendental functions. '5 '
This property is due to similarities in the pole structure
of the differential equations defining the expansion
functions and the differential equations of the com-
ponent wave functions for the particular values of the
interaction constant. We asked ourselves whether this
observation could be a guide to more complicated but

possibly known expansion functions, which allow for
terminating expansions of the wave functions in the
general case. By applying these principles (and a fair
amount of intuition) we have in fact been able to
guess the expansion functions and the expansion. We
are, however, unable to produce a mathematical proof.
However, we have a vast amount of numerical evi-
dence, which, without any exception, supports our
conjecture.

The Rabi Hamiltonian in Bargmann's method'4 is a
linear first-order matrix differential operator,

H =$ d/d$+ —,
' + ( —,

' +2&)o, +&2~((+d/d() (cr(+) + tr( )),

whose eigenvalues l1. t in the excited state i (i =0, 1, 2. . . ) are determined by the requirement that the up and
down components of the wave functions

y (m)) (g/ Jg)m+ 1/2y (m)(g)
( t ) + (g/~2)

—m+1/2f{m) (g) ) J ) (2)

(m = + —,
' ) belong to the space of entire functions. We introduce a new independent variable z = —,'(2, insert (1)

and (2) in the Schrodinger equation, and collect the spin-up and -down components. We then obtain the following
system of differential equations:

z '@tt-1(z) -(e, -h--,' 1tm+-,' })&,1-1(z)

(z+1/21(rtt 1}z-m+1/2)ftm)(z)++m+1/2j(m)(z)0(3)

( zllf + 1/2 + 1 ttt + 1 }zm —1/2 )@( m) ( z) + zm + 1/2 @
(m) (z)

+z ft 1(z) —(e;+5+——' tm+ —'})f; (z) =0. (4)

Here

g; = 2&;+1=v;+ —, —2K (5)
and u; is the baseline parameter introduced by Judd. s For m = ——,

' Eqs. (3) and (4) are identical with (2.28) and
(2.29), for m = + —, with (2.28a) and (2.29a), of Ref. 1. Equations (3) and (4) have an irregular singularity at in-
finity and two regular singularities at z= K (exponents 0 and v;) and z =0 (exponents 0 and ——,

' ). Therefore,
this singularity is elementary in Ince's classification.

The conjecture is that the functions @1~'(z), ft '(z) can be expanded in i+4 solutions w2
' (j, u;A;z) of a

second-order differential equation with the same location and character of the singular points. The differential
equation is given by

t

dz
Z

d (3}( ) j+ 1 1 —v d 131 ( ) +
Z g —K dz

K A+ w23' (z) =0,
z z(z —~2)
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(8)

where the parameter dependence of the functions is suppressed. The function w2 (j, u;A;z) has first been treat-
ed by Lambe and Ward'0", the transformed function p(q)rr'+'j (I —q') "i wq") (j, u;A;K'q), K'r)'=z, is a
generalized spheroidal wave function (Leitner and Meixner' ). For j= ——, the regular singularity z = 0 becomes
elementary and P(q) reduces to a spheroidal wave function. ' ' As we shall see [Eq. (16)], all but one of the ex-
pansion functions are of the simpler type. We call the solutions of (6) the natural expansion functions for the
solutions of (3) and (4). We are now going to study the relevant properties of the natural expansion functions, in
particular their eigenvalues A„, which sho~ a simple K and v dependence.

We expand the function w2(3) (j, u;A;z) in series:

C„(j,u;A)
w,"'(j,u;A;z) = $ " ', ' w2" (j —n;z), (7)

0 P7.K

) (j —nz)=(K z) j ")I )( j „(2Kz j )

( 2 )
—(j—n) ((r z)2 k

k=() I"(k+1)l ( —j+ n+ k+ I)
Insertion of (7) in (6) leads to the recurrence relations

—C„+((j;u;A)+C„(j,t, A) { (n j)(n+—1 —u)+A) + C„)(j,u;A)K n(n —u) =0,
which can be turned into the form

(9)

(10)

C„(j;u;A)
C„ t(j, u;A)

—K4n(n —u) W„

(n —j)(n+1 —t )+A
Here W„ is a continued fraction given by

II'„= I/( I + a„N'„+ t ),

K4(n+ I) (n+ I —u)
[(n —j)(n+ I rr) +—A][(n+ I j)(n+—2 —u)+A]

Equation (11) determines the eigenvalues A„; see the
dotted curves in Fig. 1. For K &»ery good app«»-
mations A (0) are obtained by putting the wavy bracket
in Eq. (10) equal to zero. One has

(13)

A„'0' = —(n —j)(n+ I —u), (14)

which explains the labeling in Fig. 1.
For all integer values of u, terminating expansions

(7) can be found. E.g. , for u= 1 and

Ct(j, 1;A) =0 from (11) and A=0 from (10) for
n =0. For v=2 and II'2 finite, W', =1 from (12) and
(13), and C, (j, 2;A) =0 from (11) for n =2. Fu«her-
more, from (11) for n = I one has C)(j, 2;A)

'Co(j, 2;A) and Eq. (10) fo« =0 gives
Ct(~', 2;A) =+(j+A)CO(j, 2;A). Equating the two
expressions leads to

whose two roots determine the eigenvalues for which
the series (7) terminates. Similarly f«u = X jVth-
order equations for A can be derived whose roots cor-
respond to expansions (7) for which C)v= CN+(=0',
see full circles in Fig. 1. These expansions are isolated
exact solutions of (6) of the type discovered by Judd
in simple Jahn-Teller systems.

In the following we concentrate on @ ( 'j ) (z), Eqs.
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FIG. 1. The eigenvalues A„of (10) vs u for
~'=2.50308150222239, j= —

2 (dotted curves): full cir-

cles, eigenvalues for terminating series (7); open circles,
eigenvalues for the first f(ve expansion functions in (16);
i = 2 (second excited state).
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TABLE I. The expansion coefficients x( and eigenvaiues A( in expansion (16) for
5 = 1.5, ~' = 2.503 081 50, v = 1.589, second excited state i = 2.

X/

—6.075 128 781 792 735 94 x 10-'
—2,648 95 1 778 56 1 378 54 x 10

1.312 615 681 928 325 04x 10—'

—1.894 432 1 20 916 3 1 8 14x 10-6
1 .1 34 243 0 1 7 003 605 53

—2.191 049 502 676 856 64 x 10

1,565 573 499 507 1 68 75
—3.237 79 1 500 337 626 82
—7.152 321 825 278 410 63

—1 1.881 057 781 130 561 0
—S.017 451 414 696 186 40
—8.02S 333 560 52 1 037 38

(3) and (4). According to the conjecture the function @,
' (z) is a terminating series of i +4 natural expansion

functions whose first i + 3 are spheroidal wave functions:

'("(z) = x, w,"' ( ——,', u, A, ;z) +x, +,w,'" ( ——,', u+1;A, ;z) +x, ,w,"' ( ——', , u, A, ;z).
l =0

(16)

The choice of the natural expansion functions is indicated in Fig. 1 for i = 2, u; = 1.589. In order to test the con-
jecture we expand @(I tl 1(z) also in w2(21 ( ——,

' —n;z),

~-p Q.K

From (3) and (4) we obtain a three-term recurrence relation for A„

—A„+t+A„( (n+ —,
' )(n+1 —u) + L (n) ) + A„ t(r ( n(n —1 —u)R (n) ) =0,

L (n) = ——,
' (1 —u) —(r2(1+ u) + (u/2 ——,

' +8) (u/2 ——,
' —5) —(r (u/2+ —,

' +8)O(n),

R(n) = O(n)+1,

(u/2 —n+8 ——,
'

) (u/2+8+ —,
'

) +(r'(n+ I)
O(n) =

3 3(u/2 — n+ 1+8——,
'

) (u/2+5+ —,
'

) +K'n

(12)

(18)

(19)

(20)

(21)

Note that O(n) does not depend strongly on n, and lim„O(n) 0. The similarity between the recurrence re-
lations (18) and (10) is obvious; this is a consequence of the similarities in the pole structure of (3) curn (4) and
(6). From (16) we have the following relation between the expansion coefficients:

i+1
A» = X X(C»( 2, u;A() +x(+2C»( 2, u+ I;A() +x(+3C» t( —2, Au)n(K (22)

1 =0

where A(, A, are eigenvalues of (6) referring to the
parameters in front of them. Now we insert (22) in
(18) and take proper care of (10). By this a lot of the
n dependence in the coefficients of A„,A„ I drops out
and we obtain a system of equations for x(.

I+3
g xr«&=0, n=0, 1, 2, (23)

l =0

I

the expansion coefficients A„of (12). On the other
hand, we calculate Kz and A„directly from (18)-(21).
Here the conjecture (16) is not used. The calculation

TABLE II. The interaction constant K2 as function of v

for second excited state i = 2, 5 = —1.5.

The lengthy expressions for I"„t(( will not be repro-
duced here; they can be easily obtained from
(18)-(22). We just mention that I „' still contains A(,
C„(j,u;A, ), and C„ t(j, u;A().

We take the first i +4 equations (23), fix 8 and u,
and put the determinant equal to zero. This deter-
mines K2 [and, at the same time, A( and C„(j,u, A()].
The equations are then solved for x( (see Table I). We
check that the coefficients x( also satisfy the rest of the
equations (23). Finally we use Eq. (22) to calculate

2.056
1.804
1 .648
1.553
1 .501
1 .483
1.5 14
1 .589
1 .663

K

0.250 015 286 404 49
0.500 023 440 100 82
0.749 870 230 364 32
0.999 800 377 249 418
1.254 569 917 844 271
1 .S 18 2 16 153 290 67
1.997 814 294 5o5 6o(
2.503 081 502 222 391
3.000 101 177 393 315
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TABLE 111. The coefficients of the expansion (17) and
check of Eq. (22) for v=1.589, K'=2.5030815022239,
second excited state i = 2.

4 /n'K'"

cal work by Klenner, Weis, and Doucha20 indicate that
the highly excited states might be simpler than expect-
ed. The recent discovery of a scaling law2' in the
large-i limit points in the same direction.

0
1

3

5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1.000 000 000 000 00
—1.061 132 370 282 02

4.11176037620240I»0
—5.82486507449956 x 10

9.109051532773 71 x 10-'
—1.285 73402542121 x 10-3

1,61791307270269 x 10-4
—1.824 747 125 652 3

1.859 547 610631 1
—1.725 955 133 195 5

1,469 602 081 418 0

2x ]0-5
9x 10-6
7 x 10-'
4x10 8-I.I ss 269107 016I96 x 10-'

8.431 575 990 59 I 711x 10
65x 10-"
51x 10
83»0-~'
64x 10-"
77x ]0-'7
61x 10
12x10-»

—5.741 338 893 177
3,663 391065709

—2, 198 839 714 723
1.245 770 002 720

—6,682 '756 299 512
3.403 719564 601

—1.650 155 474 485
7.63241880069Islsx 10 "

is by standard continued-fraction technique.
The entries in Tables II and III are the results of this

calculation which are accurate to fourteen decimal
places. The vertical bars indicate the position up to
which there is agreement between the results of the
two methods. This and a lot of further data show that
the conjecture must be true: The solutions of the Rabi
Hamiltonian in Bargmann's Hilbert space can be ex-
panded in i+4 natural expansion functions. The first
i+3 expansion functions are related to spheroidal
wave functions, while the last is related to the general-
ized spheroidal wave functions of Leitner and
Meixner. All our calculations have been done for
low-lying excited states i «2. Numerical work by
Graham and Hohnerbach'9 and numerical and analyti-
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