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Derivation of the Equilibrium Degree of Polarization in High-Energy Electron Storage Rings
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A semiclassical approach is used to derive, and extend to first order in g —2, the equilibrium de-

gree of polarization in high-energy electron storage rings (the Derbenev-Kondratenko formu}a).
Statistical concepts are shown to be essential for an understanding of this phenomenon. In so do-

ing, some aspects of the polarization mechanism not previously recognized are uncovered.

PACS numbers: 41.70.+ t, 03.65.Sq„29.20.Dh

It was predicted many years ago that electrons and
positrons in high-energy storage rings would become
polarized by the emission of spin-flip synchrotron radi-
ation; this is now known as the Sokolov-Ternov ef-
fect. ' Some time ago, Derbenev and Kondratenko2
gave a detailed formula for the equilibrium degree of
polarization. Many workers have had difficulty in
understanding these classic papers, partly due to their
sophisticated mathematics but also because of the
compact presentation. This Letter presents a rederiva-
tion3 of the Derbenev-Kondratenko formula obtained
by following Schwinger's45 semiclassical techniques
for calculating the synchrotron-radiation power spec-
trum. The formula is also extended to first order in

g —2, and the previously uncertain consequences
thereof are elucidated. This analysis does not simplify
the mathematics but yields new insights into electron-
spin polarization at high energies. In particular, an im-
portant point, which seems not to have been generally
appreciated, is that the polarization is a statistical-
mechanical phenomenon, and that the Derbenev-
Kondratenko formula in fact describes the equilibrium
population of electron spins. The formula involves an
ensemble average over the distribution of electrons,
which is essential to understand quantitatively the phe-
nomenon of "spin resonances, " in particular the so-
called "nonlinear, " or "higher-order, "resonances. 6

For spin- —, particles, the polarization density matrix
is specified completely by a three-component real vec-
tor

P=—PP= [(Nt Nt )/NojP

where Nt 1
denotes the number of electrons with spin

projection + —,
'

along the direction P, and Nti=Nt
+Ni is the total number of electrons, which is con-
stant. We shall calculate the equilibrium values of N 1,
Ni, and P. If pi and pt denote the probability per
unit time for flipping spin from up to down, and vice
versa, then in equilibrium one must have p i N t=p ~ W~, whence

P = (n t et )/(s 1
+ s 1 ). —

These statements do not depend on the chosen axis of

quantization, but the description, and calculation, of
the equilibrium state of the ensemble is simplified by
the use of certain preferred quantization axes. The
quantization axis we use is described below: Its use
simplifies the determination of the magnitude and
direction of the equilibrium polarization. The model
we treat assumes that the individual electrons are in-

dependent, and that the emission of distinct photons is
uncorrelated. In that case pt and pt are proportional
to the number of photons which cause a spin flip along
the direction P emitted per unit time; this, in turn,
depends on the corresponding power spectra
dPt 1/des, via

P 1, i
~ J'

(dc'/Alai�)

dPt t/d~. (3)

The calculation entails three steps. First, we
describe the solutions of the equations of motion, i.e.,
the unperturbed trajectories, derived from an appropri-
ate unperturbed Hamiltonian. Next, we calculate the
transition probabilities between these trajectories to
leading order in perturbation theory, with the aid of
(3). Finally, the requirement of statistical equilibri-
um, together with an ensemble average over the elec-
tron distribution, yields the equilibrium degree of po-
larization, via (2).

The Hamiltonian for the orbital motion is

&i= {[p—(e/c)A, j c'+m'c I'~ +e~l~ (4)

which leads to the Lorentz equation. Here p is the
canonical momentum, while 4,„,and A,„,are the elec-
tromagnetic potentials specified by the design of the
accelerator. We shall also need P, the electron veloci-
ty in units of c, y= (1 —~P~2) t~'", and the accelerator
electromagnetic fields E,„, and B,„,. The orbital trajec-
tories consist of oscillations around a central trajectory,
the equilibrium closed orbit. It is convenient to use
the azimuth 0, instead of time, as the independent
variable (8 —= 2rrs/L, where s is the arc length and L is
the circumference of accelerator). An orbital oscilla-
tion can then be specified by three coordinates r(0)
and their canonically conjugate moments p(&), which
describe the longitudinal and transverse offsets from
the equilibrium closed orbit. These can be expressed
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l3$ %rltlng

r(8)
y(8)= (8)

=
k —+1, +2, +3

a„Ek(8), (5)

where the Qk are real constants, called the "tunes" of
the normal modes. In terms of the a„and 8, the
periodicities of y are described by

E„(8+2~) = e "E„(8), (6)

where y = 0 corresponds to the equilibrium closed or-
bit, Ek(8 ) denotes a normal mode, and the ak are con-
stants. The normal modes have the property7

y(ake k, 8+2m) =y(ak, 8).

This will be important to us when discussing the spin
trajectories, to which we now turn.

The Hamiltonian for spin motion is

e a'y
ext +I ex +I exts a+ —B — P B P- a+ isxE „=-s 0,

'y 'y

where a = (g —2)/2, in which g is the gyromagnetic
ratio. Derbenev and Kondratenko2 treated only the
(unphysical) case g=2: We are concerned to check
how important are the deviations introduced by
nonzero a. In the nonrelativistic limit git2 reduces to
the familiar result —p. B, where ga = ges/2mc.

From P 2 we can derive the Thomas-BMT
(Bargmann-Michel-Telegdi) equation for spin motion
ds//dr = 0 x s, where 0 is evaluated on the orbital tra-
je««y, and so depends on the orbital motion. We
cannot therefore adopt the same spin-quantization axis
on every orbital trajectory —in general it would not be
a solution of the corresponding equation of motion.
However, conventional perturbation theory (for calcu-
lation of the transition probabilities) demands that the
initial and final electron states be solutions of the un-
perturbed equations of motion, both for orbital and
spin motion. For this reason, Derbenev and Kondra-
tenko2 introduced a vector n(r, p) as the spin-
quantization axis. The vector n associated with an or-
bital oscillation y is defined to be a solution of the
Thomas-BMT equation, and may be parametrized by
the previous coefficients ak. n=n(ak, 8). Then n
displays the same periodicities as y, 2 in (7):

n(ake ",8+2m) =n(ak, 8)

The direction of the equilibrium polarization is given
by a calculation of the vector (n)z, the average of n
over the coefficients ak associated with n and y,
evaluated at azimuth 8. Because of the parametriza-
tion chosen, the computation of this average is easy to
visualize —in equilibrium, for a given set of values of
~ak), the particle distribution does not depend on the
phases of the oscillations of the particles around the
equilibrium closed orbit, and so it is uniformly distrib-
uted over all values of the phases of the ak. It can be
shown that this direction is periodic around the ring,
i.e.,6 (n) ii+2„= (n) ti, as should be expected.

Next ~e must consider the relevant matrix elements
that describe the transitions of interest. When a pho-
ton is emitted, the electron will, due to its energy loss,
make a transition to a different orbital trajectory. Let

the quantization axes of the initial and final trajec-
tories, at the aximuth 8 where the photon is emitted,
be n, and nf, respectively. '0 Then spin flip is defined
by a change of spin orientation from n& to —nf, or
vice versa. Thus the relevant matrix elements are

nf I S i t lni) and (ng I yi;„t I

—n, ), where

ittt e (farad P ' Arad) +2( ext~ ext Etad~ Brad)

(10)
describes the coupling to the radiation electromagnetic
fields. The second term, describing the spin-
dependent coupling, has the same form as &'2, but
with static fields replaced by radiation fields.

There are also, of course, photon emissions which
do not flip spin, described by the matrix elements
(nf ) S;„t(n,) and ( —

n&~ P;„t)—n, ). In addition,
there is energy gain in the rf cavities of the accelerator.
These processes produce a negligible change in the
spin projection along the equilibrium polarization
direction (n)tt, but they do have another, important,
effect: They lead to the establishment of the equilibri-
um distribution alluded to above when discussing the
ensemble average. It is these nonflip processes which
are chiefly responsible for spreading out the particle
distribution uniformly over all values of the phases of
the coefficients ak which parametrize the orbital and
spin trajectories; thus they determine the direction of
the equilibrium polarization, while the spin-flip transi-
tions determine the equilibrium values of the up- and
down-spin populations and, hence, the magnitude of
polarization.

The time scales involved are very different: The
nonflip processes achieve their effect in tens of milli-
seconds, whereas the spin-flip transitions are much
rarer, and require tens to hundreds of minutes to es-
tablish the equilibrium degree of polarization. Since
the direction of polarization is established so quickly,
this leads to a clear distinction between the concepts of
spin-flip and non-flip, and of the roles they play —it
would otherwise be difficult to define these terms if
the direction of P were evolving towards its equilibri-
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um value on a time scale comparable to the buildup
time of the equilibrium magnitude of P. Because of
this difference in time scales, we are able to easily
identify the matrix elements relevant for determining
the equilibrium degree of polarization.

Returning to these matrix elements, it is the second
term in /f;„, that is generally regarded as the source of
spin-flip synchrotron radiation. Notice, however, that
because n, and nf are not necessarily parallel, even the
spin-independent part of &';„, yields a nonzero contri-
bution, which is comparable in practice to that of the
spin-dependent term. This is a mechanism not hither-

to noticed per se. If the photon energy is h'u&, and the
electron energy is E, and we define b,y= —tu&/mc2,
then it is convenient to write

A Bn
Qf —BI+Ap =GI-

By

ii oj Bn (11)E By

where the derivative y(Bn/By) is a measure of the ex-
tent to which n, and nf are not parallel. This
represents the new spin-flip mechanism that leads to
terms in y(Bn/By) in the Derbenev-Kondratenko for-
mula.

To calculate the power spectra, we follow
Schwinger4 and use the formula

1

2 t

Re ~ j(r, t) j'(r', t') p(1 t)p (r t ) e-(~(t —t k-(r -r)/e]dA dt',
4mc " c

(12)

P

where cu is the frequency of the photon, and k its direction of propagation. We get the charge density p and the
current density j from the matrix elements of P;„,. To do so, we substitute for E„d and B„d in P;„, by writing
E„d= —(ice/c)(A„d —k4„d) and B„d= —(ioi/c)kxA„d We. then read off the charge- and current-density
operators p», j» via P;„,=j„A"/c =p»4„,d

—j,„A„d/c. The quantities p and j that appear in (12) are then the
appropriate matrix elements of p,„and j,~, e.g. , for spin flip from n, to —nf, we have p = ( —nf {p»~n, ), etc.

The approximations made in the subsequent calculation are the usual ones in the field, and the integrals encoun-
tered are the same. 4 5 8 The details of the algebra are lengthy: Some are given in Ref. 3, including expressions for
the power spectra d P

1 1/des. The final expression for the equilibrium degree of polarization is

8 ((3(d8/{R{ ){(1+—", )b n —(1+—,')b y(Bn/By) I)
5~3 (()(de/{R {3){I + —", a —( —,

' + —", a) (n v) + —,", ly(Bn/By) I I )

to first order in a = (g —2)/2. Here b is the direction
of the local accelerator magnetic field, R is the local ra-
dius of curvature of the trajectory, and v is the direc-
tion of electron motion. The angular brackets denote
an ensemble average over the distribution of particles.
Derbenev and Kondratenko2 obtained the above result
for a = 0, but in this more detailed form, it seems to
be new. Since a =10 3, and the coefficients in (13)
depend weakly on a, it is of interest to ask whether the
polarization can be strongly influenced by a nonzero
value of g —2.

To study this, let us begin with the case of circular
motion in a uniform, static magnetic field B,„,=Bi.
Then the Lorentz and Thomas-BMT equations reduce
to

d eB ds eBPxz, = (ye+1)sxz, (14)
dt mcy dt mcy

In this case n b=l, n. v=0, and y(Bn/By)=0
everywhere. Then P = (8/5 J3)(1+Sa/9). " Neglect
of the term in a yields the original result of Sokolov
and Ternov. ' In this idealized model, P is a constant,
and does not depend on the details of the accelerator.
In more realistic cases, however, the behavior of P is
strongly dependent on such details, as manifested by
the existence of spin resonances. These resonances
are caused by the behavior of n and y(Bn/By), which

depend strongly on the value of a, since by (14), the
spin-precession frequency is larger by a factor ya + 1

than the orbital (Larmor) rotation frequency. Now
yet + 1 = 10-100 in existing or proposed high-energy
electron storage rings. The spin thus tends to precess
much faster than the velocity when traversing a static
magnetic field. In the above example, n=z=const;
but in a more realistic model, where 8,„, varies, and n
must precess around it, it is easy to see that n and
y(Bn/By) are sensitive functions of a. It is well
known to workers in the field, and clear from the
above remarks, that the equilibrium direction of the
polarization is a strong, explicit function of g —2. The
important dependence of the equilibrium magnitude of
the polarization on the magnetic-moment anomaly,
however, is implicit

A number of remarks are in order. First, the fore-
going justifies the way in which the equilibrium polari-
zation has thus far been calculated in practice7'2'3—the Derbenev-Kondratenko expression is used, but
n and y(Bi(i/By) are calculated with a AO. An impor-
tant goal of these calculations is the analysis of the
phenomenon of spin resonances. 7'2 '3 Near a reso-
nance, the polarization almost vanishes, and so the ac-
curate determination of resonances is essential to the
design of an electron accelerator in which it is desired
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to achieve a high degree of polarization. A clear
understanding of the roles played by the component
parts of the Derbenev-Kondratenko formula, or of
(13), in determining the degree of polarization is thus
desirable. 6

Next, (13) is an expression of statistical equilibrium
in the transitions between the spin-up and -down pop-
ulations, and the ensemble average is essential. This
aspect of the polarization process has not generally
been emphasized. " Further, many workers have had
difficulty in interpreting the meaning of the quantity
y(Bn/By). Perhaps the reason for this is the failure to
realize that n is not merely a fixed vector, but a vector
field —a function of the coefficients ak. From our
analysis, it is clear that y(B@'By) is also a vector field,
and has, in general, a different value on distinct orbital
trajectories. The usefulness of n itself lies in the ease
with which the equilibrium behavior of the electron
spin population can be described: The key lies in the
parametrization of n. By choosing a spin quantization
axis whose periodicities are linked to those of the orbi-
tal trajectory on which it is defined, we can easily
describe the calculation of (n)a, and also the matrix
elements of /tt;„, relevant for determining the equili-
brium magnitude of the polarization.

In this context, let us repeat the argument for the
origin of polarization in electron storage rings. When
an electron emits a photon, its spin sometimes flips.
This can be either because of the direct interaction of
the spin operator with the photon field in the interac-
tion Hamiltonian, or because the initial- and final-spin
quantization axes are not parallel. Polarization
develops because the transition probabilities are not
equal for flips in opposite directions.

In summary, the above derivation not only shows
that the Derbenev-Kondratenko formula may be
derived using semiclassical techniques, but also helps
to elucidate several aspects of the polarization process
not evident from the work of the original authors.
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