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Simple System with Quasiperiodic Dynamics: A Spin in a Magnetic Field
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A very simple system ~ith quasiperiodic dynamics is introduced, consisting of a single spin, with

spin T, in a pulsed magnetic field. The pulses are of two types, and the t~o types alternate in a

quasiperiodic way. By adapting renormalization-group and dynamical-systems techniques first in-
troduced in the study of one-dimensional quasiperiodic structures, I characterize the long-time
behavior as a function of the experimental parameters. Within different ~e11-defined regions of
parameter space, the time correlations decay (a) more slowly than a power law, (b) as a power law,
or (c) faster than a power law, and pmbably exponentially.

PACS numbers: 71.55.9v, 71.50.+ t

There has been much recent interest in quasiperiod-
ic structures in one, two, and three dimensions. These
systems are intermediate between the completely
periodic perfect crystals and the random or disordered
amorphous solids. A major push for the understand-
ing of these structures was given by the experiments
of Schechtman et al. ,

' which seem to show evidence
for a quasicrystal in the material Aios6Mno i4. At the
same time, the one-dimensional quasiperiodic Fi-
bonacci lattices have been studied in much depth, with
mathematical techniques of great beauty and power.
As I will make frequent use of these results in this
Letter, I will now give these references in detail. The
first application of dynamical-systems techniques to
quasiperiodic structures was in the Letters of Kohmo-
to, Kadanoff, and Tang2 and Ostlund et al.3 In particu-
lar, Kohmoto, Kadanoff, and Tang introduced a
dynamical system equivalent to the Fibonacci series of
transfer matrices, a reduced dynamical system of the
traces, and found an invariant of this map. Many
results were anticipated in an earlier Letter of Kohmo-
to.4 A particularly elegant extension of this geometri-
cal understanding was presented by Kohmoto and
Oonos and Kohmoto. 6 A classificatio of invariant
structures of these maps has been given by Kadanoff.

Although there has been much progress in the
theoretical understanding of quasiperiodic structures,
and many exotic features have been identified, the ex-
perimental realization of such structures is difficult.
The exact nature of the alloy Alos6Mno i4 is still un-
resolved, while no examples of one-dimensional quasi-
periodic lattices have been found in nature. The best
prospect for such a one-dimensional lattice is probably
to make it. But these experiments are difficult„and
although it is theoretically very interesting to vary the
parameters of the structure, this usually requires mak-
ing a ne% sample.

For these reasons, I here propose a very simple sys-
tem in which the quasiperiodicity is introduced
through the time dependence of the dynamics instead
of the structure. Thus it is a very simple matter to re-
peat the experiment and change the parameters. Yei,
as I will show, the consequences of quasiperiodicity

—now reflected in the dynamics —are just as interest-
ing as for the quasiperiodic structures. In the course
of this investigation, I will extend the theory of the
dynamical-systems approach. It is my hope that this
Letter might lead to the design of feasible experi-
ments.

To introduce what I suppose is probably the simplest
such system, I wish to consider the dynamics of a sin-
gle spin with spin angular momentum h/2, in a time-
dependent magnetic field B(t). Thus the equation of
motion is it dV/dt= —p, B(t) cr'Ir He.re 'Ir is the
wave function for the spin, a two-component column
vector; p, is the magnetic moment of the spin; cr are
the 2 x 2 Pauli spin matrices. For the time dependence
of the magnetic field, we choose it to be pulsed, so
that B(t„)=0 for times t„between pulses. Thus the
nth pulse occurs between t„ i and t„. The pulses are
only of two types, which we designate A or 8.

Suppose that the A pulse occurs between time to and
time ti This will. be produced by a magnetic field of
strength Bq (t) in a direction which we take to be con-
stant. Thus the wave function V(ti) after the pulse is
related to the wave function 4(to) before the pulse
through a unitary transformation given by a 2 x 2 uni-
tary matrix,

A =exp[(inc, /&)cr „B„(t)dt].

fhe integral is taken from to to ti. We will abbreviate

this matrix as

A = exp(i a cr ) = cos(n ) + i sin(n )o. a/n.

The parameter n is the length of the vector a, and is
between 0 and m. The direction of a is a/n and can
point to anywhere on the surface of a unit sphere.

A similar expression gives us a unitary matrix 8 for
the pulse of type 8, and it is parametrized by the vec-
tor p in a similar manner:

8=exp(iP a) =cos(P)+i sin(P)o- P/P.

The dynamics of the spin is now simply a specifica-
tion of the type of pulses, as they occur. Thus, if we
first apply an A pulse, then a 8 pulse, next another

pulse, 'Ir ( t3) = 'Ir3 = ABA +o. In general,
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= U(n)'Po, where U(n) is a 2x2 unitary matrix
given as a string of n A's and 8's. All finite strings are
contained in tlM infinite work U(~) = U. All the
dynamics after r = 0 consists in the specification of this
infinite string.

The magnetic field Bz can point in any direction,
and so we choose our coordinate system so that Bz is
along the positive z direction. Thus A is simply speci-
fied by the parameter a, or equivalently by y
= Tr(A )/2 = cos(a).

For the magnetic field B~, after we specify the angle
I' that Bz makes with B~, the direction is arbitrary,
and so we choose our coordinate system so that BB is
in the x-z plane, pointing in the positive x direction.
Finally, we specify the magnitude of 8 by giving the
parameter P, or equivalently by

x = Tr(8)/2 =cos(P).
We shall call such an orientation for the ordered pair
(B,A ) the standard alignment. Any other orientation
(8',A') can be brought into standard alignment by a
rotation, carried out by a rotation matrix R, which it-
self is in SU(2), through (8',A') = R (B,A )R

Thus the experimental arrangement is specified by
the three parameters (a, p, I ), each of which ranges
between 0 and rr If we. take the trace of the matrix
product BA, then

z = Tr(BA )/2
= cos(u)cos(p) —sin(n)sin(p)cos(l").

The equivalent parameters r=(x,y, z) will be impor-
tant in the subsequent discussion.

In this Letter I wish to emphasize the application of
this experimental arrangement to the investigation of
quasiperiodic systems, a subject of much current in-
terest. In particular, let us consider a dynamics based
on the Fibonacci numbers Fk, defined by Fk+ i=F„,+F„, F0= F, =1. These numbers increase ex-
ponentially so that Fk —$" for large k, where
$= (I+&5)/2 is the golden mean.

Then we specify the Uk= U(F„) by the Fibonacci
rule

Uk~i= Uk i Uk, Ui=A, and U2=8A.

Thus, reading from right to left, the first few pulses in
the experiment are

. . .ABABAABABAABAABABAABA.

This sequence is obviously not periodic, yet not ran-
dom, with much self-similarity.

It was the important contribution of Kohmoto, Ka-
danoff, and Tang to point out that this recursion
scheme gives a dynamical system on pairs of matrices.
Let Bk = Uk i and Ak = Uk, then the recursion
scheme is equivalent to the pair of equations
Bk+ I

= Ak, Ak+ )
= BkAk, %1th initial conditions

Bi = 8, A i
= A. This is an automonous dynamical sys-

tem on a six-dimensional vector space of ordered pairs
of matrices (B,A ), given by the matrix map
(B,A ) (8',A') = (A, BA ). Next, following Kohmo-
to, Kadanoff, and Tang, I show that it contains a
simpler dynamical system.

The following result is a simple extension of a result
of Kohmoto, Kadanoff, and Tang, and enables us to
establish a dynamics on the traces of three consecutive
matrices: Let A, B,C,D be matrices in SL(2,C), and
D=AC, C=BA. Then TrD+TrB=TrCTrA. (Tr is
the trace of the matrix. )

We make use of the result by considering the
transformation 8 ABA =8', A BAABA =A', so
that BA ABABAABA =8'A'. We now apply the
previous result successively to establish that
TrB'= Tr(BA )TrA —TrB, TrA' =TrB'Tr(BA ) —TrA,
Tr(B'A') =TrA'Tr(BA ) —TrA. If we treat the traces
themselves as independent variables, x =Tr8/2,
y= TrA/2, z=Tr(BA)/2, then the variable z is in-
dependent of x,y and we now have a dynamical system
on (xy, z) =r, given by the trace map r= (xy, z)

r'= (x',y', z') = (y, z, 2yz —x).
In terms of the previous Uk matrices, we have

x„=TrU„,/2, yk= TrU„/2, z„=TrUk+, /2. Now the
traces are iterated by the trace map
rk rk+i=(yk, zk, 2ykzk —xk), with the initial condi-
tions given by the experimental parameters through
xi = cos(p), yi = cos(u), zi = cos(o. )cos(p) —sin(o. )
x sin(p)cos(I ).

Further, as pointed out by Kohmoto, Kadanoff, and
Tang, the following quantity is an invariant of this
dynamical system:

I = x +y + z —2xyz —1

= —[sin(~) sin(P )sin(I') 1 .

The invariance is easy to verify by substitution. The
consequence is that the trace system is seen to move
on a two-dimensional manifold. The second expres-
sion gives the range of las —1~1~0. If I=0, then
A, 8 commute, and all U(n) are elements of an Abeli-
an subgroup of SU(2). On the other hand, if I = —1,
A, B generate the quaternion subgroup of SU(2), a fi-
nite group consisting of the eight elements + I, + i o,

Suppose that A and 8 are elements of a finite sub-
group of SU(2). Then clearly all U(n) are elements
of the same subgroup. Finally, since the subgroup is
finite the phase space of the dynamical system is finite
and hence all points must be K-cycles of the dynamical
map.

For A, B elements of a fmite subgroup, the invariant
I can take only discrete values. In fact, however, we
find fixed points of the trace map as curves intersect-
ing the invariant surfaces. Suppose we find a K-cycle
of the trace map. What are the implications for the
matrix map~
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Since the traces of three consecutive matrices re-
peat, this means that the parameters of two consecu-
tiv«s. say 8k+Pc Uk+Ic —t and Ak+K Uk+IF
peat, as does the angle between. Thus, this pair
(8k+„,A„+Jr) is rigidly rotated, and therefore the K-
times iterated pairs are equivalent, up to a rotation R,
to the original pair (Bk,Ak). In terms of the matrix
map, we have (Bk+Ir,Ak+Ir) =R(Bk,Ak)R '. I em-
phasize that R is the same for all k.

Therefore, an invariant set for the K-times iterated
matrix map is the set of all distinct pairs of matrices
R "(Bk,Ak)R ", for all integer n T. his may be finite
or infinite, depending on whether R is rational or not.
Different invariant sets are further labeled by the in-
dex k from 1 to K. If the cycles of the trace map cor-
respond to a finite group, then we know that the in-
variant set of the matrix map is a set of points. Thus
R must be rational. If R is irrational, on the other
hand, then the invariant set consists of K one-
parameter submanifolds.

How is R determined'? Take an initial matrix pair

a c a

b d b

back hemisphere front hemisphere

FIG. 1. The two hemispheres of the invariant surface of
the trace map with J = —~ are shown. All points outside

the figure eights are points on a single orbit. The letters
designate fixed points of the iterated trace map as follows:
(a) elliptic twelve-cycle, (b) elliptic four-cycle, (c) hyperbolic
six-cycle, (d) hyperbolic two-cycle, and (e) hyperbolic six-
cycle.

(8 (r),A (r)) in standard alignment with parameter r. Iterate once to find (8',A') = (A, BA ), with parameter r'.
Then (8',A') can be brought into standard alignment by a rotation S(r), to give (8',A') =S(r)
x (8(r'), A (r'))S(r) '. When we repeat this process k times, we find the expression

(8„+t,Ak+ t) = S(rt) S(r„)(B(rk+ t),A (rk+ t) )S(r„) ' S(rt)
Thus for a K-cycle of the trace map we have rx+t
= rt, so that we can make the identification
R = S(rt) . S(rk). This expression must be invari-
ant set if we translate along the orbit of the trace map.
Similarly, if the invariant set of the trace map is a col-
lection of closed curves, as occurs about an elliptic or
stable K-cycle —eigenvalues with absolute value
1—the invariant set of the matrix map is a set of tori.
Thus, in this sense the dynamics of the rotations is
trivial or integrable; the trace dynamics determines all.

In Fig. 1 I show typical orbits of the trace map on
one hemisphere of the invariant surface, which has the
topology of a sphere, for I = ——,'. Note that all points
except for the closed curves inside the figure eights are
points on a single orbit. The other hemisphere looks
the same up to a rotation. We identify an ellptic
twelve-cycle, an elliptic four-cycle, a hyperbolic six-
cycle, and a hyperbolic two-cycle. Another hyperbolic
six-cycle is contained within the large chaotic orbit.

Although there is certainly much other structure in
the trace map, these shorter cycles dominate the gross
features of the trace map at all values of I. The six-
cycle (O,y, 0, 0, —y, O) is hyperbolic at all I =y —1.
The two-cycle (x,y) and six-cycle (x, —y, —x,y, —x,
—y) with x+y =2xy and xy ( 0 are a pair which to-
gether have the tetrahedral symmetry of the invariant
surface. I is given by I= ——, + (x —

~ ) + (y ——„' );
they exist for all I and are elliptic for I & —

—,', . At
I = ——,', they become hyperbolic, and bifurcate to pro-
duce an additional elliptic four-cycle (x, ——,,

1 1
—, —x, ——, ) and twelve-cycle (x, —,,x ——,, ——,, —x,1 1 1

—,', —,
' —x, —,', —x, ——,',x ——,', —', ), respectively, with

I = ——+(x ——)'& ——9
16 4 16 '

In Fig. 2 I show the direction of the matrices Ak in
the matrix sequence, by points on the unit sphere,
near the two-cycle, for a value of the invariant I for
which the two-cycle has become stable. Note that
since this is a projection of the phase space of the
dynamical map, winding around the torus is reflected
in the braid structure of Fig. 2.

The discrete "time" of the matrix dynamics is the
index k of the Fibonacci numbers Fk Pk, while the
Fibonacci numbers themselves are the discrete time of

FIG. 2. The direction of the evolution matrix Uk along an
orbit of the matrix map, near the elliptic two-cycle of the
trace map, The invariant surfaces of the matrix map are two
tori, and the braid structure in the figure is a projection of
the twists on the tori.
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back hemisphere front hemisphere

FIG. 3. The direction of the evolution matrix U(n) in
time, for an orbit of the trace map near the elliptic t~elve-
cycle. Note the localization near the directions correspond-
ing to the tetrahedral subgroup, and the further structure in
these spots.

the spin system, given by the index n on the wave
functions. Thus n-@". In Fig. 3 I show the direc-
tion of the evolution matrices U(n) after successive
pulses, by points on the unit sphere, near the elliptic
twelve-cycle, for a value of the invariant I near ——,',
the value of I shown in Fig. 1. Note the localization
about discrete directions. The traces of U(n) are like-
wise localized near the values 0, + —,', +1; the first
three are from the twelve-cycle, while the last two are
from + the identity.

We can understand these results as follows. Near a
stable elliptic cycle of the trace map, the traces and
matrices rotate with constant angular velocities in the
Fibonacci index k, and thus slow down logarithmically
in the time index n @";essentially they stop and are
localized. Thus, near a stable elliptic cycle of the trace
map, the autocorrelation functions decay more slowly
than a power of the time.

Similarly, near a hyperbolic cycle of the trace map,
the autocorrelation functions decay as a power of the
time, with the power being given by the Lyapunov ex-
ponent of the trace map. Finally, if in the chaotic re-
gion of the trace map the escape is faster than ex-
ponential in the Fibonacci index, as suggested by the
work of Kadanoff and Tang, s and instead goes as the
Fibonacci number itself, then the autocorrelation

functions will decay faster than a power and possibly
exponentially in time.

I have thus determined the three regions of parame-
ter space characterized by the qualitative difference of
the decay of the time correlations: more slowly than a
power, as a power, and faster than a power. In addi-
tion, when we are near a stable cycle of the trace map,
so that the decay of the time correlations is slower
than a power, the time evolution has a self-similar or
fractal character, which can be calculated exactly by
methods introduced by Sutherland. 9

Finally, I wish to emphasize that in the calculation I
have selected conditions which make the theory partic-
ularly tractable. This may not be the optimum choice
for the experiment. However, it is reasonable to ex-
pect that the qualitative results would be the same for
other realizations, such as (1) arbitrary —or even
classical —spins, (2) weak relaxation effects, and (3)
oscillatory instead of pulsed magnetic fields, as long as
the two frequencies are strongly irrational, such as in
the golden ratio. The region of parameter space for
which the motion is localized can be quite large, the
arguments are robust, and the systems are easy to
simulate numerically.

I would like to thank Mahito Kohmoto for many
helpful discussions.
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