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With a simple model it is demonstrated that semiconductor quantum wells can exhibit motionally
dependent binding. The dependence of binding on transverse motion results from mass mismatch
at the quantum-well interfaces and can occur in both parabolic and nonparabolic systems. Accumu-
lation layers on degenerate semiconductors such as n-InAs are shown to provide observational evi-
dence for the effect. Implications for quantum-well experiments and applications are discussed.
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With the advent of the technology for creating
high-quality quantum wells and superlattices has come
a remarkably broad and promising vista of future new
semiconductor physics and device applications.!
Therefore, the nature of the electronic states in such
structures is of great current interest. In this Letter we
focus on a particular aspect of one-dimensional quan-
tum wells. We find that effective-mass discontinuities
at the well-barrier interface can lead to carrier confine-
ment that depends on the transverse motion. Conse-
quently the subband dispersion relations terminate ei-
ther above or below a critical transverse momentum
depending on the mass mismatch. Such a mismatch
occurs naturally in quantum wells based on narrow-gap
semiconductors and we frame our discussion in terms
of nonparabolic systems, but, as we shall see, the
characteristic dependence of quantum-well binding on
transverse motion occurs whenever a quantum well is
formed by materials with differing effective masses.
These ideas are used to interpret data on n-InAs accu-
mulation layers. In addition we explore some conse-
quences and possible applications of this new effect.

To illustrate the effect we discuss a rectangular po-
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tential well in the framework of the two-band model.
The results can be generalized to more complicated
nonparabolic models and to other potential wells. Fig-
ure 1 shows the model: a material with energy gap
Eg = E| and thickness 2a, sandwiched between materi-
al with E,=E,=E,. The two-band dispersion rela-
tions for each material are given by?

E*=(E\/2)*+ Bk} +Bukd

1
(E— V) =(EY2)*+ Bk + Bkl M

where the wave-vector components along the normal
to the layer plane and transverse to it are given by k;
and k,, respectively. Any potential difference is denot-
ed by V (determining the band offset), and g,
= Ek%/2my},, where m/, are the band-edge mass com-
ponents.> The same k, appears in each dispersion rela-
tion, reflecting translational invariance in the layer
plane. For simplicity we have assumed ellipsoidal
constant-energy surfaces with rotation axes oriented
normal to the interfaces.

At the interfaces, the assumption of continuous
two-band envelope wave functions*® gives the
bound-state eigenvalue equation:

(r Bk tank; @ — i Brakiy) (r Brikyy cotkpa +iBiakpy) + ki (r By — B2)? =0,

r=(E—V+EyJ/2)/(E+E\/2),

containing both even- and odd-parity solutions. For
k,=0, i.e., no motion in the layer plane, bound-state
solutions for electrons occur only for +E,<E
< 5E,+V and hole bound-state solutions only for
—+E, > E > —+E,+V. To investigate the effect of
a finite k, on the bound-state solutions, we have nu-
merically solved the eigenvalue equation (2) together
with the dispersion relations (1) with the realistic
narrow-gap—semiconductor parameters, £, =200 meV,
E,=300 meV, V +25 meV, 2a =80 A, m;} =0.22m,,
and m,] =0.022m,, where m, is the free electron
mass. While the chosen mass anisotropy is particularly
appropriate for the lead salts, for example, it is not
critical as we show below by using a second example
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with an isotropic mass. Additionally, in the spirit of
the two-band model, we have assumed that the effec-
tive masses scale with the gap energy, i.e., B;;= 8,
and B,;=B;,- The resulting subband dispersion rela-
tions are shown in Fig. 1.

At k,=0 we find two bound-electron solutions and
two bound-hole solutions. As k, increases the hole
subbands vanish, whereas additional electron subbands
are found (infinitely many). If the sign of V is re-
versed, electrons can become motionally unbound and
holes motionally bound. For V=0 there is no
motionally dependent binding in the model with

Bi1= B2
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FIG. 1. Model quantum well and subband dispersion.

Dashed dispersion curves denote unbound resonant states.
For positive ¥, conduction-band (CB) states are motionally
bound and valence-band (VB) states are motionally un-
bound.

Motional binding is not limited to quantum wells in
narrow-gap materials. Examination of the dispersion
relations (1) in the parabolic limit shows that the lon-
gitudinal motion is constrained by an energy barrier
given by’

Veir=Vo+ 512k (1/ms —1/m}), 3)

where Vo=+E,—+E,+ V is the band offset. Quan-
tum wells composed of materials which have differing
effective masses (such as those proposed for
effective-mass superlattices®) will therefore exhibit
motionally dependent binding. Whether the binding is
enhanced or reduced with k, depends on the sign of
the mass discontinuity.

We turn now to a related system, an accumulation
layer, to demonstrate the observability of motional
binding. Accumulation layers at semiconductor sur-
faces are bound in potential wells formed by the sur-
face barrier, which can often be assumed infinitely
high, and a self-consistent screening potential. If the
semiconductor is degenerate, and for illustration »
type, the Fermi level lies in the conduction band as
shown in Fig. 2. Accumulation layers are therefore
potential-well systems with finite barrier heights and
thus, for nonparabolic semiconductors, will exhibit
motionally induced binding. In degenerate systems, as
in Fig. 2, a motionally bound subband may be occu-
pied if the energy E., corresponding to the wave
number k, = k. at which motional binding begins, lies
below the Fermi level Ex. The occupancy for such a
subband i is given by N, = (k% — k2)/2# for spin de-
generacy 2, where kg is the Fermi wave vector for sub-
band / as indicated in the figure. In tunable accumula-
tion layers, where N,; is controlled by a gate voltage
V¢, the occupancy can be varied smoothly from Ny; =0
through the value k2/27 which occurs when k. has
vanished. This is in sharp contrast to the parabolic
case of no motional binding where the occupancy
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FIG. 2. Accumulation-layer potential and subband disper-
sion for a degenerate semiconductor. Our calculation
models the seif-consistent potential (dotted curve) by a half
square well with infinite potential step at z =0.

would jump discontinuously from 0 to k,%/21r upon
binding.’

The frequency, By, of Shubnikov-de Haas (SdH)
oscillations for a given subband is given by B, =/#ck?/
2e (for spin degeneracy 2 and valley degeneracy 1),
i.e., it is always determined by a Fermi ‘‘surface’’ area.
Thus for k. =0, the SdH frequency is a direct measure
of subband occupancy.!® When k,#0 and a subband is
motionally bound, however, the SdH frequency does
not measure the subband occupancy but is ‘‘pinned”’
to k2. Such pinning of the SdH frequency has been
observed for accumulation layers on n-InAs’ and on
Hg,_,Cd,Te,'"!2 but was interpreted in terms of
discontinuities in subband occupancies valid only for
strictly parabolic systems.

To illustrate the SdH pinning quantitatively, yet
avoid the necessary self-consistency of real accumula-
tion layers, we model the potential by a step of depth
V and width a in the semiconductor and assume an in-
finite barrier at the interface. The energy eigenvalues
for this well are the odd-parity solutions of the
square-well problem discussed above with Iofg= E,
=FE,. We choose E,=400 meV, a=200 A, and
Er=30 meV above the conduction-band edge to cor-
respond roughly to the n-InAs accumulation layers.’
For V in the range 70 to 77 meV, the ground-state
(i=0) solution is bound for all k,, the first excited
state is only motionally bound (not bound for k,=0)
yet occupied. Figure 3 shows k2 (proportional to B;)
plotted against the subband occupancy together with
an inset of the observed behavior’ for the i =1 sub-
band. (The dependence of N;; on gate voltage V,
depends on the details of the screening, of course, but
the dependence is one to one.) We believe that
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FIG. 3. Calculation SdH frequency vs carrier density in
the first excited subband for the model InAs accumulation
layer. Parameters are a =200 A, E, =400 meV, Eg=30
meV above the conduction-band minimum. Dashed line in-
dicates N, discontinuity which would occur in a strictly para-
bolic system. Inset: Observed (Ref. 7) SdH frequency vs
gate voltage V, for the first excited subband for an n-InAs
sample with £g=30 meV.

motional binding nicely accounts for the experimental
observations.

The existence of motionally bound subbands will
also be reflected in a variety of other experiments.
The most obvious of these are those which can involve
the motionally bound states as initial or final states in
electronic transitions. Thus intersubband resonance,
intersubband photoemission, and interband photo-
luminescence will all exhibit effects due to the motion-
al binding. For example, in the accumulation layer we
have just discussed, a 0— 1 intersubband resonance
will be observable at gate voltages not only below the
onset voltage predicted by a k,=0 calculation, but
below the gate voltage at which the i =1 SdH oscilla-
tions vanish.

It is instructive to apply the effective potential of Eq.
(3) to the InAs case. The nonparabolicity can be ap-
proximately included by incorporation of energy-
dependent terms in the effective masses: m,]
=m,; (0)[1+2E/E,] and m,5(0)[1+2(E— V)/E,].
The mass discontinuity, m,5 —m,}, is therefore nega-
tive and thus V g— V is positive, leading to enhanced
binding with increasing k, as our model calculation
showed. When V =0, we also note that m,} = m,; and
there is no motional dependence of the binding as we
observed above for the quantum well of Fig. 1. For
strictly two-band systems, therefore, the motional
binding (or debinding) for finite V is due to the mass
discontinuity which results from the nonparabolicity.

Effects of motionally dependent binding are also
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found in the presence of a magnetic field, as suggested
by our use of SdH data in the discussion of the InAs
accumulation layer. When the magnetic field is
aligned along the normal to the quantum-well inter-
faces, the energy-level structure may be easily found
by replacement of &, in Eq. (1) with 2n/\?, where X is
the magnetic length A= (fc/eH )2, and n is the Lan-
dau index. Just as the binding energy depends on &,
for the zero-field case, the binding energy depends on
the value of n when H has some fixed value. In the
case of motionally enhanced binding, it is possible,
therefore, to have a situation in which Landau levels
for n below some critical index are unbound while
those for higher n are bound and compose the Landau
ladder corresponding to a given, motionally bound
subband. If any such Landau levels lie below the Fer-
mi level, cyclotron resonance corresponding to
motionally induced binding can be observed.

When a subband becomes unbound it merges into a
set of virtually bound or resonant states as indicated in
Fig. 1 with dashed ‘‘subbands.”” In the case of
motionally enhanced binding, this leads to the in-
teresting and surprising result that electrons in
motionally bound states can escape from the well by
losing energy (through acoustic phonon emission for
example) and scattering into the lower-lying resonant
states. This process may have important applications
in the development of infrared detectors!® or lasers
based on quantum wells of mass-mismatched materi-
als. A key feature of such quantum wells is the cou-
pling between the transverse and longitudinal motion.
It is intriguing to consider, therefore, the possible util-
ity of this mechanism in the quest for ultrahigh-speed
submicron transistors. In a system with motionally
enhanced binding, for example, ballistic electrons in-
jected into a quantum-well channel with momentum k,
could pass current in the perpendicular direction only
if k, were below the critical value k. at which motional
binding is induced. Thus the transverse ballistic
current would control the perpendicular current.

As a final note we recall the formal analogy’
between the Dirac equation and the two-band model in
semiconductors which was recently exploited, for ex-
ample, in discussing cyclotron resonance of inversion-
layer electrons in InSb for crossed electric and magnet-
ic fields.'* A quantum well as in Fig. 1 with £,=E,
corresponds formally to the one-dimensional square-
well case for a Dirac electron capable of three-
dimensional motion.

Our purpose in this paper has been to point out that
existing*® theories describing the electronic states in
quantum wells within the envelope-function approxi-
mation predict a dependence of the confinement on
the transverse motion whose consequences are observ-
able, and we have used the InAs accumulation layer to
demonstrate the observability. Detailed proposals for
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device applications will be published elsewhere. In ad-
dition, the sensitivity of the motional binding or de-
binding to the potential V could be exploited to give a
measure of the band offset in certain materials. Furth-
ermore, the dependence of the effect on the mass
mismatch at the interfaces may allow an experimental
study of the validity of the envelope-function approxi-
mation.
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