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The possibility of roughening in low-angle grain boundaries is investigated. By exhibiting an
analogy between grain-boundary steps which do not have long-range strain and steps on solid sur-
faces, I argue that a grain-boundary roughening transition, of the same type as for solid surfaces, is
possible. It is found that, as the grain-grain rnisorientation 8 goes to zero, the energy of such a
grain-boundary step diverges as In(I/O). From this divergence I argue that, for sufficiently small 8,
the solid will melt before the grain boundary has a chance to roughen as the temperature increases.

PACS numbers: 68.35.Rh, 61.70.6a, 61.70.Ng, 68.35.8s

The roughening transition (RT) is the most widely
studied and commonly observed interfacial phase tran-
sition. i The RT temperature Ttt separates two qualita-
tively distinct, equilibrium phases of the interface:
the low-temperature "smooth" phase and the high-
temperature "rough" phase. These phases are associ-
ated with distinct growth properties2 and crystal mor-
phologies. 3 For small driving force a nucleation bar-
rier limits growth in the smooth phase (exponential
growth) but not in the rough phase (linear growth). A
facet in the equilibrium shape of a macroscopic crystal
is present in the smooth phase but absent in the rough
phase.

Traditionally, the RT is associated with the solid-
vapor interface (thus, the terminology "surface
roughening"). In fact, for the simplest models which
have a RT, solid-on-solid models, the vapor be-
comes a vacuum, the solid has no vacancies, and the
only degrees of freedom are associated with positions
of (nonoverhanging) steps which are allowed on the
surface. Roughening of solid-liquid interfaces is also
known to be possible, 6 although theoretical models
seldom distinguish between liquid and vapor. Since
the lattice-gas (Ising) model, which is known to have a
RT,7 corresponds directly to a binary alloy, s antiphase
boundaries also roughen. For such solid-solid boun-
daries strain effects are not important, so that lattice
models correctly describe the RT.

Here we wish to understand the RT for interfaces in
which strain effects are important. The simplest such
interface, the low-angle grain boundary (LAGB), is
the focus of our attention. The LAGB is a natural can-
didate, since, as the angle of misorientation 8 between
the two grains goes to zero, the elastic strain energy of
the LAGB is the dominant contribution to the interfa-
cial energy. In this paper I first argue that a LAGB
RT is possible and then we investigate the dependence
of Ttt on 8. We find that Ttt diverges as ln(1/&) as
& —0. For a real material this divergence implies that,
for 8 & Il„the (bulk) grains will melt before roughen-

ing occurs. Although the methods I use are applicable
only for 8 less than some Hm,„,I believe that for many
materials 8,

„

is larger than 8, . We estimate below
that, for copper, 8, is roughly 2' while 8,

„

is 5', so
that a RT is predicted to occur for 2' & 8 & 5' in

copper.
Several parameters are necessary to characterize an

arbitrary LAGB. For our purposes we choose a simple
situation in which the fluctuations responsible for the
RT are easy to picture. We thus restrict our attention
to symmetric tilt boundaries in simple-cubic materials.
In Fig. 1(a) I illustrate, on an atomic scale, a
moderate-angle ( T =0) symmetric tilt boundary with
misorientation 8 = 19'. As I) decreases, the matching
of the two grains at the grain boundary becomes in-
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FIG. 1. (a), (b) Cuts through symmetric LAGB (boun-
dary normal i). The dots of (a) indicate edges of planes
descending from the top of (a). In the continuum limit,
good for smail tl, these defects of (a) become the edge dislo-
cations of (b), oriented parallel to y, intersecting the x-z
plane at the dots, with Burgers vectors as directed by the ar-
rows. (c),(d) Cuts through nearly symmetric (@(( 1)
LAGB (boundary normal i+ $x). Positions of the disloca-
tions, strictly planar in (c), are partially relaxed (squared) to
the stepped structure (d). Broken lines serve as guides to
the eye.
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creasingly good except near a series of parallel, equally
spaced (spacing D), coplanar, linear defects which are
readily identified (by a Burgers circuit) as edge dislo-
cations (Burgers vector b=bz, b= lattice constant).
The small-8 (0= b/D, D =dislocation spacing) dislo-
cation description is pictured in Fig. 1{b). In general,
except for regions of order b from each dislocation
(the "core"), the solid may be considered as an elastic
medium, with local deformations determined from
dislocation configurations by the use of dislocation
theory. '0

The RT is a defect-mediated transition. The impor-
tant defects, in the solid-vapor-interface context, are
loops of steps (ledges) which encircle an interfacial is-
land or depression. A step which is straight at T=O
will, for T )0, incorporate jogs (kinks) which increase
the configurational step entropy per unit length. As
T Tz the step free energy per unit length f,(T)
vanishes, so that large loops are created with little cost
in interfacial free energy. Since step wandering is the
only source of step entropy in lattice models, we expect
that Tq should roughly scale as f, (0). From both
solid-on-solid5 and Ising7 models we find ka TIt= 1.3hf, (0), where h is the step height. For systems
not confined to a lattice other sources contribute to the
step free energy, such as effects due the altered vibra-
tions of atoms near the step (relative to atoms away
from the step), with amplitudes less than a lattice spac-
ing, and relaxation of atoms near the step off the sites
extrapolated from average atomic positions deep in the
bulk solid. We introduce the (bare) step free energy
per unit length, f(0)(T), which includes such sources
but excludes jogs along the step. This quantity is simi-
lar to the bare surface tension introduced in capillary-
wave theory. " fto)(T) may be calculated as the extra
free energy of a step per unit length in the slab
geometry, where the slab thickness, equal to the step
length, is given by the closest approach to two jogs in
the same step in an infinite system. In such more real-
istic systems we approximate' kgTlt by 1.3hf, ( Tq).

This Letter argues that a direct analogy between
solid surfaces and LABG is possible so that, like sur-
faces, LAGB may roughen. '3 '5 This RT, like that of
a solid-fluid interface, would be in the Kosterlitz-
Thouless universality class. ' In developing this anal-

ogy we first identify the LAGB analog of the crystal-
vapor step. In the crystal-vapor interface a slight
change in boundary orientation introduces widely
spaced steps. Suppose the LAGB normal of Fig. 1(b)
is tilted by a small angle @ (0 & @, A « 1) toward
the x axis. (A tilt toward the y axis will be considered
later. ) Geometrical considerations require the intro-
duction of "new" edge dislocations, parallel to the old
ones, of spacing D/Q and b=bx, in accord with
Frank's formula. 9

Originally, in such a tilted interface it has been as-

sumed9 that all (new and old) dislocations are confined
to a strictly two-dimensional plane [Fig. 1(c)]. In that
case a long-range strain field (energy density —r )
extends around each new dislocation. Since the new
dislocation spacing D/@ provides the cutoff to this
strain field, a simple integration shows that the extra
elastic energy (over that of the symmetric LAGB)
scales as9'6 Hgln(1/$). Since the number of new
dislocations scales as 8@, the energy per unit length
per dislocation f (T=O) diverges like 1n(1/@), as~ 0

Both theory" and experiment'~ indicate that in
asymmetric LAGB the dislocation positions are re-
laxed from a strictly two-dimensional plane. In the
case of the slightly asymmetric LAGB, the energy is
lowered by the local relaxation of the old dislocations
around each new dislocation into a steplike structure,
with step height equal to the old dislocation spacing D
[Fig. 1(d)]. This structural relaxation of the old dislo-
cations induces a long-range strain which exactly can-
cels that of the new dislocation for distances larger
than a cutoff distance of order D. '9 The extra elastic
energy now scales as 8$, so that the step energy per unit
length f (0)is finite. Such a single step, which incor-
porates a new dislocation without a long-range strain,
is the desired analog of the crystal-vapor step.

Now suppose that the LAGB normal of Fig. 1(b) is
tilted toward the y axis. The new, widely spaced,
parallel dislocations are now screw dislocations, perpen
dicular to the old dislocations. An analysis similar to
before identifies the LAGB step [Fig. 2(a)]. Again,
the step height must be equal to D to relieve long-
range strain. In this step structure each of the old
(edge) dislocations must now jog [cf. Fig. 2(a)].

For either type of LAGB step, since the step height
D = b/8 becomes increasingly large as 8- 0, it seems

(a)

Dg

/

FIG. 2. Perspective of (a) relaxed and (h) partially re-
laxed (squared) "perpendicular" step. The new dislocation
(Burgers vector b= bx) intersects each of the old disloca-
tions (b= bi).
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f,'"(T)=A(T)ln(1/8)+B(T)+. . ., (2)

where, as before, the dots denote terms higher order
in 8. Also, ft i(0) =f, (0). Fluctuations on length
scales less than D account for the difference
f,' l(T) —f, (0).

Might A ( T) of Eq. (2) vanish at some temperature
T? The sources of entropy of the bulk solid, which
may be included in the temperature dependence of the
elastic coefficients (iLt, and v) and core-energy parame-

plausible that the step energy f, (0) diverges as 8 0.
The extra core energy per unit step length is indepen-
dent of 8 as 8 0 and, therefore, not responsible for
this divergence. On the other hand, the elastic energy
of the new dislocation extends a distance D about each
new dislocation and, therefore, accounts for this diver-
gence. A simple integration of the elastic energy den-
sity suggests

f, (0) =Aoin(1/8)+Bii+. . . ,

where the dots denote terms higher order in 8, and
where core effects contribute solely to Bo while elastic
effects contribute to both Ao and Bo

I have succeeded in verifying Eq. (1) for the sharply
squared steps in which the new dislocation is parallel
[cf. Fig. 1(d)1 or perpendicular [Fig. 2(b)] to the old
dislocations. No terms diverging with the system size
were found, so that the exact cancellation mentioned
previously was confirmed. The core term, which I did
not calculate, corresponds to the energy density in-
tegrated over the cylindrical volume surrounding each
core. I have calculated the elastic term, from the
volume outside the core, within isotropic linear elasti-
city theory using standard techniques. '0 The details of
this calculation will be presented elsewhere. 2O For the
step parallel to the old dislocations I find AD=K/D
and Bo= (K/D) [In(n) —2.1], where the energy unit
is K = p, b3/[4m(1 —v) ] (p, is the shear modulus and v

is Poisson's ratio) and the (not calculated) dimension-
less constant n, as used in Hirth and Lothe, 'o charac-
terizes the core energy. For the perpendicular step,
Ao = 2(K/D) (1 —v ) and

Bo ——(K/D) ( (1 —v) [2ln(n) —5.2] —1.3).
The fully relaxed structures [e.g.„Fig.2(a)] will have
lower energies. For the parallel step Ao is unaffected
by relaxation, while for the perpendicular step relaxa-
tion may not reduce Ao to less than (K/D) (I —v). Bo
will be affected in each case.

Equation (1), with Ao & 0, suggests that Ttt(8) will
also diverge as ln(1/8) which, in practice, indicates
that for sufficiently small 8, the crystal will melt before
its interface roughens. However, as mentioned previ-
ously, the important parameter is not f, (0) but rather
ftol( T), the free energy of a step constrained not to
have jogs. We expect

ter n, will not cause A ( r) to vanish, since iu. ( T') ~ 0
and v(T) ( 1. The most likely candidate that I en-
vision is that associated with the many configurations
of the new dislocation, wiggling with amplitude less
than D and interacting with the old dislocations. Using
the methods of Ref. 14, I have found that the energy
AEof a sinusoidal fluctuation of amplitude a and wave
vector k goes as a k ln(1/kD) for k ( 1/D and costs
significantly more energy for k ) 1/D. I find that such
fluctuations contribute a term —ka T(const)8 ln(1/8)
to the free energy, so that they contribute to the
higher-order terms of Eq. (2), not to A (T). There-
fore, I propose that A ( T) is positive for all T so that,
for sufficiently small 8, a LAGB RT will not be found
because of bulk melting.

The value of 8 above in which roughening does not
occur may be estimated as follows. We choose LAGB
in copper, since the core energies may be deduced
from experiments near its melting temperature
(T~ =1356 K). At 1338 K these experiments2' indi-
cate n= 1.1 (1.4) for an edge (screw) dislocation.
The bulk elastic constants near T may be estimat-
ed to be iu, = 1.4 x 10'0 N/m2 and v = 0.4,
while b(T~) =2.6 X 10 ' m. We find Df' = K
&& [ln(1/8) —2.0] and Df~o = K [1.21n(1/8) —4.0],
where K = 1.7 kg T~. Setting Df to' = 1.3ka T yields
8„;,= 2'. This must be considered an order-of-
magnitude estimate because of the uncertainty of the
magnitude of entropic contributions to B(T), our
failure to allow full relaxation from the stepped confi-
guration, and our choice of a simple-cubic lattice in the
calculation (copper is fcc). Since the dislocation
theory of LAGB appears" to be valid in Cu for 8 & 5',
a Cu LAGB should be rough near T for 2' & 8 ( 5'.
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