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NMR in Normal 3He with a Meander-Line Coil
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A simple technique is proposed for probing the single-particle and collective excitations in a Fer-
mi liquid via a standing magnetic surface wave of arbitrary m and fixed k generated by a meander-
line coil. The calculated po~er absorption spectrum for 'He displays singularities associated with
the / = 0 spin-wave mode and a Doppler-shifted spin resonance of the single-particle excitations.

PACS numbers: 67.50.—b, 07.58.+I

For the most part, magnetic resonance experiments
are usually carried out in the presence of a spatially
uniform rf excitation field. An important exception is
a light scattering study' where in-plane wave-vector
conservation places restrictions on the wave vector of
excitations generated in a medium. A second excep-
tion is the case of metallic samples where the skin ef-
fect concentrates the Fourier components of the wave
vector of excitations generated in the medium to the
vicinity of 5, where 5 is the skin depth; this property
allows the generation of magnetostatic modes in fer-
romagnets' and Silin spin waves in pure metals (at
low temperatures). In the case of standard NMR, spin
diffusion is generally studied by application of an inho-
mogeneous static field, 4 rather than an inhomogene-
ous rf field. '6

In this paper we explore rf excitation using a period-
ic meander line which has the property of having a
specified wave vector lying in the plane of the surface
of a sample. This situation is shown schematically in
Fig. 1. By symmetry this structure restricts the in-
plane component of the wave vector of excitations
generated in the medium to match that of the meander
line; it places no restrictions on the normal com-
ponent. Qualitatively, we expect the meander line to
behave as a diffraction grating (or„more precisely,
left- and right-moving diffraction gratings). The k
vectors of the excitations generated in the medium
would then be expected to satisfy the grating equation.
In particular there will be a "cutoff frequency" for the
grating which can be probed experimentally, to gain
information on the excitation spectrum. A 3D analog
of the meander-line transducer has been proposed by
Corruccini as a way of setting up a nonuniform rf
field to couple the spin modes. The kinematics of this
device ~ould be governed by the Bragg law; as dis-
cussed above, the diffraction-grating law applied to our
2D structure.

We recently applied this idea to the case of an insu-
lating ferromagnets and indeed found cutoff-frequency
phenomena for the magnetostatic Damon-Eshbach
surface wave and the bulk spin-wave mode. %'e also

examined the acoustic analog of this idea9 (where an
interdigital transducer replaced the meander line) for
the case of normal 3He and the cutoff phenomena for
the zero sounds were again encountered.

Here we propose a relatively simple technique for
measuring both the Fermi velocity and the phase velo-
city of the spin waves in 3He which in turn yield the
amplitudes of the spin-antisymmetric Landau interac-
tion function, Fo and Ft. Although our model calcula-
tion was done for normal 'He, it may be generalized to
the superfluid phases and to other Fermi liquids such
as spin-polarized 3He, or the electrons in pure metals.

We consider a sample of normal He occupying the
z & 0 half space. We direct a uniform static magnetic
field, Ho, along the z axis, and excite the surface with
a standing magnetic surface wave, which can be
decomposed into left- and right-running waves prop-
agating along the x axis. As was shown in Ref. 8, this
kind of disturbance can be generated by an array of
parallel, equally spaced wires carrying antiparallel alter-
nating currents i =i tie
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FIG. l. A schematic of the meander-line coil used to ex-
cite a standing magnetic surface wave.
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8solution for the magnetic scalar potential has the form

1 —km'
y(r, r) = cos(air) ( —I)

( )
4i0 —I cos(k x)e

C m=0

value of k is fixed by the geometry of the transducer and is g' yiven b k = n/I, where
t &

' '
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our runnin waves and the problem reduces to finding thedriving field can be written as a linear combination of four running waves an t e pro
fespollse of the systefl1 to the driving ield

$ —(r, t) = @oexp( —i air +ik„x—k„z) (2)

L d -S'l'n kinetic equation. ' For normal 3He only
d 'th agating modes. The inhomogene-

i li uid are overned by the an au- i in i

the transverse components of the spin density -(,it rr- (r, r are associate wi prop
OUS Orm O Cf f th Landau-Silin equation can be written as

(3)(8, +( p 8 + 0')(1+5')I,='=( p 8 + 0')tl„@;
4

here the operator F' represents the spin-antisymmetnc
part of the molecular field interaction; its kernel is ex-
pressed as a series of Legendre polynomials P&(p p',
with respective Landau amplitudes FP. Furthermore,

Larmor frequency, and @ is the magnetic scalar poten-

cv/Oo
I

I

tial generated by the transducer.
This equation will be solved for the potential given

3b E . (2) under the assumption that the He quasi-
particles reflect specularly from the transducer in e-11

face.
The analytic solution for a.=+ allows us to formulate

the response of the system in terms of the power ab-
sorbed per unit area of the transducer-liquid interface.
It turns out that we can only couple to the spherically
symmetric (I =0) mode of the spin density. The bulk
dispersion relation for this mode is illustrated in Fig.
along with the boundaries of the particle-hole continu-
um, as modified by the magnetic field.

The calculations to be presented show that the
power absorbed by the liquid involves both the single-
par ic cticle excitations and the (collective i = spin

. 3 aridmode. The calculated spectrum is shown in Fig. 3 an
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FIG. 2. Locations of the dispersion branch for the I =0

spin wave and the particle-hole continuum in the dimension-
less ao-k plane. O, o is the Larmor frequency. A value of
k„v/00 sets the probing profile.
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FIG. 3. Power absorbed per unit area of the 'He-
transducer interface as a function of the frequency of the
driving field.
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displays singularities associated with various thresholds
for both of the above processes. The locations of
these singularities (or cutoff frequencies) are illustrat-
ed in Fig. 2 and are associated with the following phys-
ical phenomena.

(a) Q, (k„)is the threshold frequency for the prop-
agation of the l = 0 mode. (Note that this mode
crosses into the particle-hole continuum at large k
whereupon Landau damping sets in. )

(b) Q+ ——Qo+k„v define the limits of a region
where the direct generation of single-particle excita-
tions by the driving field is forbidden. Physically,
these latter frequencies correspond to the so-called
Doppler-shifted spin-resonance (DSSR)."

To understand DSSR consider a 3He quasiparticle
moving parallel to the surface with the Fermi velocity,
+v, and interacting with a magnetic surface distur-

bance of phase velocity cd/k„; the quasiparticle will
sense a Doppler-shifted frequency given by AD
=co(1+k„v/td). We anticipate from Fig. 2 (and the
detailed solution will bare it out) that when run

matches the spin-enhanced Larmor frequency,
Qp ——Q p/(1 + Fp ), a DSSR singularity will occur; this
is equivalent to condition (b) above.

Experimental measurements of Q, (k) would allow
one to probe the dispersion relation for the transverse,
i = 0, spin mode and would determine the Landau
parameters (Fq, F~ ) with spectroscopic precision.
Furthermore, observation of the DSSR thresholds,
Q +-, would provide an independent determination of
the Fermi velocity and Fo.

We now briefly present the analytic solution of our
problem. The assumption of specular reflection of the
quasiparticles at the interface imposes the requirement
that 0.- be invariant under reflection (changing the
sign of p, at z=0). We seek a solution of Eq. (3)
with the potential given by Eq. (2), which satisfies the
above boundary condition in the following form:

Using a Fourier-transform method we solve our
equation in the full space, and by appropriate (odd)
analytic continuation of the potential P into the lower
half space, "we obtain a solution satisfying the specu-
lar boundary condition. A full solution is given in
terms of different moments of o - in p space and has
the following form:

(rp (z)=, J dk, 2$p z + 1+
2ni -~ kz D -+

A -+(o),k) —1,
kv

o. +-(z) = dk, 2$p 3 +
' A+-(td, k) —1',

2+i ~ — ' k3 D+- kv kv

here O.p= (a-) - and cr, = (a.p ) -, k = (k k )'i, where (. . . ) - = (1/4n ) J d Q-. . . , and

t
r

ya cu + Op F~) co+ 00D-+ = (1+Fp') 1+ +td Ff —' F(') 1+ + Ff — A+-(cu k)
(Ql + Qp), 3, cd + Qo

with

(Qj + Q p + k ll )
A +- (co,k ) = —,

' ln
(cd + Q p k ll )

(6)

We note that our solutions represent the response of
the liquid to a single running component of the stand-
ing wave of Eq. (1). To obtain the full response one
has to add the three remaining solutions, which can be
easily obtained from the analytic solution Eq. (4) by
alternation of the signs of cu and k„. We identify
D —=0 with the dispersion relation for the 1=0 spin
wave.

The remaining integration in Eq. (4) can be carried
out explicitly by use of Cauchy's integral theorem.
Since we are interested in the solution in the region
z & 0, our contour of integration must be closed in the
upper half of the complex k, plane. To avoid mul-
tivaluedness of the integrand connected with the loga-

rithmic terms of A +-, we introduce a cut line connect-
ing the branch points of A-+. Therefore the contour
will include a detour which excludes the cut line and
the branch points. Finally, the integrals evaluated will
contain two contributions: a contribution from a sim-
ple pole arising from D =0 (given by the respective
residue) and a contribution from the branch point of A
(represented by the integral along the cut line). Both
contributions can be expressed as a sum of plane
~aves with k vectors given by the location in the com-
plex k, plane of the pole or the branch point, respec-
tively.

An energy-flow theorem can be obtained from the
Landau-Silin equation and it allo~s us to express the
energy-current density as
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((A,B))= —,
' '! dz{(A,B),+ (A,B), I

and the time average, (. . . ) „

is evaluated as

(8)

A straightforward algebraic consequence of Eqs.
(7)-(9) is that the only nontrivial contributions to the
energy flow, (Q), come from o-'s with real k, vectors.
Since both D and A are functions of cu, the location of
the simple pole and the branch point depends on fre-
quency. Certain critical values of cu, when the singu-
larities move from the real to the imaginary axis in the
complex k, plane, represent the previously discussed
cutoff frequencies for the energy flow. To make a
connection between the above analytic results and our
previous physical picture, we identify those frequen-
cies where the simple pole lies on the real axis with the
allowed region for i = 0 spin-wave generation. Similar-
ly, the frequency range in which the branch points of
A -+ lie on the real axis defines the situation where a
direct coupling between the single-particle excitations
and the driving field occurs.

We have yet to account for dissipative effects.
Phenomenologicaliy, one can modify our collisionless
treatment by adding a small imaginary part to the fre-
quency in our final result according to the substitution
cu co+i/r. This is only a qualitatively correct pic-
ture, since certain conservation theorems must be
built into the true collision integral. %e now present
the power absorption spectrum obtained numerically
from Eq. (7) and the integrated solutions given by Eq.
(4). We use Fo = —0.7 and Fi = —0.55 for the Lan-
dau amplitudes (p = 0 atm) and assume 103 G for the
dc field. The spacing between wires in the meander-
line coil carrying a current of 0.01 p, A is assigned a
value 10 p, m. The spin-diffusion relaxation time,
T27 D, has the experimentally measured value of
3.0X 10 7 sec mKz. '3 This evaluated at 2 mK is iden-
tified with our phenomenological parameter 7. Figure
3 shows the graphical results. Note that singularities
occur involving all of the kinematical features con-
tained in our qualitative discussion. The peak power
absorbed by a 1-cm meander-line transducer at the
singularity associated with the i = 0 spin-mode genera-

tion is equal to about 1()
power at the edges connected with the particle-hole ex-
citations is about 5X10 ' W. Both magnitudes of
power are readily detectable. In both cases we satisfy
the condition that the dynamic spin density is much
less than the static spin density (induced by the static
external dc magnetic field), a necessary condition for
our linearized theory to apply.

In conclusion, we have presented the results of a de-
tailed calculation concerning a new experimental tech-
nique which is capable of directly probing single-
particle and collective excitations of an interacting Fer-
mi liquid. An expanded version of these model calcu-
lations will be presented in a future publication. '
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