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%e examine experimentally the stability of a Stokes layer in a fluid near a boundary whose tem-
perature is modulated as Tocos~t. %e define an appropriate Rayleigh number for the problem and
determine its critical value. Increased stabilization is observed to accompany a reduction in the
Prandtl number. %e observe hysteresis effects near the critical Rayleigh number, including a dou-
ble hysteresis loop, which appear qualitatively similar to recent predictions of Roppo, Davis, and
Rosenblat.

PACS numbers: 47.20.8p, 47.2S.Qv

Externally modulated hydrodynamic systems are a
relatively recent development in studies of hydro-
dynamic stability and the transition to turbulence. '

Comparison of experiment to theory for slowly modu-
lated Taylor-Couette flow has not been notably suc-
cessful, 2 9 whereas when modulation is rather rapid,
theory and experiment are in quite satisfactory ac-
cord. ' to Slowly modulated Benard convection is like-
wise a difficult problem, ~ whereas rapid modulation
appears to be, experimentally, a relatively simple and
convenient system to study, at least at cryogenic tem-
peratures. In particular, the important time constants
of the problem are short (small layer thickness, rapid
modulation), and the effects of side walls can be
minimized (large effective aspect ratio —see below).

This Letter describes a novel type of thermal-
convection experiment which we believe has not been
investigated in detail in the past. The principle of the
experiment is illustrated in Fig. 1. Figure 1(a) shows
the thermal circuit and Fig. 1(b) the electrical circuit.
%e have a cylindrical cell operating at cryogenic tem-
peratures with helium I as the working fluid. The cell,
of radius 0.809 cm, has a stainless-steel walls of thick-
ness 2.54X10 2 cm, and top and bottom copper plates
whose separation is d = 0.4115 cm.

The principle of the experiment, suggested to us by
Philip Hall, is that one plate is held at a reference tem-
perature T and the other at a temperature T
+ Tocoscot, where co is the circular frequency and t the
time. The effect of this periodic heating and cooling
extends into the fluid a characteristic distance
d, = (2n/co) ti2, which we shaH call the Stokes layer.

We have chosen to modulate the upper plate of our
apparatus, ~hose mean temperature is set at T„,and to
monitor the mean temperature difference between the
upper and lo~er plates AT= Tz —T„as a function of
the modulation amplitude. We define a Rayleigh
number for this problem as Ntt, „=ge Tod,3/nt, where
g is the acceleration of gravity, and e, g, and ~ are
respectively the thermal expansion coefficient, thermal
diffusivity, and kinematic viscosity of the fluid, whose
Prandtl number is defined as o.= t/». The thermal
circuit for the experiment may be appreciated from

Fig. 1(a). The top plate is heated periodically through
heater H„ the mean temperature T„ is set by a heat
leak AHL to an external, colder, temperature bath. If
the liquid helium is not in motion, the thermal resis-
tance of the liquid, RH„gives a linear response. The
effect of modulation of the upper plate is then com-
pletely reversible, and ET=0. On the other hand, if
convection begins in a Stokes layer of thickness
d, && d, the thermal resistance AH, is nonlinear, and
heat is given up irreversibly by the underlying fluid.
This cools the lower plate and gives rise to a tempera-
ture difference LIT (0 via a rectification effect. The
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FIG. 1. Schematic diagram of (a) thermal circuit and (b)
electrical circuit for the Stokes-layer experiment.
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cell walls constitute a parallel thermal resistance R„
back to the upper plate.

The electrical circuit is shown in Fig. 1(b). Under
steady conditions, the top plate is maintained at T„by
means of a resistance bridge and temperature controll-
er sensing the germanium resistance R, and supplying
controlled heat to H, . Thermal modulation is provid-
ed by a simple addition of a frequency synthesizer and
adjustable series resistance, which superimposes a
modulation of the electric current supplied to H, at a
frequency ~. This corresponds to a temperature
modulation of amplitude To as determined from mea-
surement of R, . The temperature difference d T is
measured by a ratio transformer bridge between
matched resistors RDC and RDF. The thermal time
constants are such that TL responds slowly to condi-
tions in the unstable layer.

The convective onset is observed experimentally by
plotting 4 T, the measure of convective contributions
to the heat flux, against the Rayleigh number as the
latter is increased in value. Ramping of the Rayleigh
number is accomplished by increasing the peak ampli-
tude of the sinusoidal current output to H, in steps
small compared with that found necessary to initiate
convective flow. To, and hence NR,„, are linearly
dependent upon the amplitude of the modulated elec-
tric current, so that any ramping rate can be applied
uniformly, as desired, throughout a run. A waiting
time of at least one vertical thermal diffusion time of
the entire cell is employed after each step in To and
prior to data acquisition.

The temperature difference b T is obtained from
out-of-balance voltage measurements of the ratio
transformer bridge; averages are computed for mea-
surement times of t-2wn/co, n an interger, from
which the temperature difference is then recovered
through a previous calibration. To is obtained from
the resistance bridge measuring R, by a similar pro-
cedure. The output of this bridge, labeled V, in Fig.
1(b), provides a dc voltage proportional to its off-
balance signal. This, in turn, is proportional to the de-
viation of the top-plate temperature from its mean
value T„. The amplitude of the temperature modula-
tion To is obtained from measurements of this voltage,
averaged over integral multiples of the modulation
period, using known values of dv, /dR, and dR, /dT.
With To, the Rayleigh number is computed from
values of the fluid parameters evaluated at the tem-
perature T„and obtained from the cubic spline fits of
Barengh~, Lucas, and Donnelly. "

During an experi-
mental run care is taken to stay well within the linear
range of the off balance of the bridge. As an example
of the linearity of the modulation, higher harmonics of
the temperature difference across the cell in the sub-
critical (conduction) region were typically measured to
be at least 60 dB lower than the amplitude of the fun-

damental modulation frequency.
Figurc 2 is an example of a b T-NR, „plot and shows

combined results for three runs with frequencies of
0.032, 0.048, and 0.08 Hz and Prandtl number
o. =0.49. Here b, T is normalized by To, which is the
amplitude of modulation at the convective onset. The
frequencies chosen correspond to Stokes-layer
thicknesses varying between 100/0 and 200/0 of the cell
height d. The critical Rayleigh number for these runs
is found to have a value of approximately 122, in-
dependent of the period of modulation. One of the
more interesting features of Fig. 2 is that the onset of
convection is "abrupt, " i.e., the flow develops at finite
amplitude. This is indicative of an inverted bifurca-
tion, and is in contrast with what one expects in the
more conventional case of an unmodulated, stationary
fluid layer similarly satisfying the Boussinesq approxi-
mation.

At the time these results were first obtained, we had
a number of interesting conversations with Steve
Davis, who suggested that we look for hysteresis about
the convective onset. Hysteresis is an obvious mani-
festation of the bifurcation structure predicted by Rop-
po, Davis, and Rosenblat'2 for a fluid layer with one,
or both, horizontal boundaries subject to a sinusoidal
modulation of the temperature. In particular, the
theory predicts a finite-amplitude convective onset to a
hexagonal planform as the Rayleigh number N„,„ is
increased past its critical value. Dependence upon ini-
tial conditions is expected to give rise to a double hys-
teresis loop near the critical Rayleigh number, where
the first loop (in the direction of increasing Rayleigh
number) traverses the regimes of stable conduction
and subcritical hexagons, while the second is entirely
supercritical and involves a history-dependent transi-
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FIG. 2. Mean temperature difference vs Rayleigh number
for o =0.49 (T=2.63 K) and modulation frequencies of
0.032, 0.048, and 0.08 Hz corresponding to circles, squares,
and triangles, respectively, as the Rayleigh number is in-
creased. 5 7 is normalized by To„which is the amplitude of
modulation at the convective onset.
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tion between hexagons and roil-type convection. This
bifurcation picture is essentially the same as that
predicted earlier for a stationary convecting fluid layer
subject to non-Boussinesq conditions.

Subsequently, we observed a very clear and striking
hysteresis effect composed of two loops, which is
displayed in Fig. 3(a). A schematic representation of
the hysteresis is presented in Fig. 3(b), where bifurca-
tion curves taken to represent two different convection
planforms have been drawn to correspond to the data
in Fig. 3(a). Specifically, the unhatched portions of
the curves were plotted to overlie the actual data
points and, together with the hatched portions, to
serve as a guide to the eye for purposes of comparison
with relevant theoretical plots. In fact, there is re-
markable qualitative similarity between Fig. 3(b) and

the bifurcation diagram presented in Ref. 12 (their
Fig. 3).

%e note that the dashed horizontal line AT=0 in
Fig. 3(b), corresponding to the conduction state of the
fluid, is not actually realized experimentally, as is clear
from comparison to Fig. 3(a) (see also Fig. 2). In-
stead, values of b T preceding the convective onset de-
crease, suggesting that the "conduction" state is not
of a purely diffusive nature, but rather involves some
finite motion of the fluid. We believe that these are
transient motions induced during part of the cycle, i.e.,
the unstable part, and subsequently damped out during
the remainder of the cycle. This sort of behavior in
modulated systems, and its effect on the measured
heat transfer, are discussed in papers by Finucane and
Kelly4 and Davis. 3

With regard to the absolute value of our measured
critical Rayleigh numbers we refer to the theories of
Hallt~ and Gershuni and Zhukhovitskii. '5 Both consid-
er the case of an infinitely deep layer with one rigid
boundary which is subject to temperature modulation.
Hall has found that the stability equations relevant to a
rapidly rotating cylinder in a uniform flow can be ap-
plied directly to the rapidly modulated convection
problem, provided that the Prandtl number is unity.
Calculations have produced a critical value of
Ntt, „,= 108 for that case, which is reasonably close to
our measurement of NR,„,=122 for Prandtl number
tT = 0.49. Preliminary measurements at a higher
Prandtl number, o.=0.75, however, give N„,„,= 85,
so that our system appears to be less stable than that
considered by Hall. On the other hand, considerable
uncertainties in the He-I parameters, particularly in
the viscosity, could lead to nearly 20'/o uncertainty in
the absolute Rayleigh number. Effects due to the la-
teral boundaries can probably be neglected in this re-
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FIG. 3. Results of hysteresis run for o- = 0 49 and

v=0.048 Hz. (a) The data corresponding to increasing (cir-
cles) and decreasing (squares) Rayieigh numbers. The Ray-
leigh numbers are normalized by Na, „,=122. (b) A more
schematic picture of the experimental results. Hatch marks
indicate unstable branches for two convection planforms I
and II. The dashed line corresponds to the conduction state
and vertical lines with arrows indicate points of transition
from one mode to another. Transitions are generally made
only in the direction of the arrows as the Rayleigh number is
increased or decreased.
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FIG. 4. AR,„, as a function of the Prandtl number. Cir-

cles correspond to our experimental results for a. =0.49
(T= 2.63 K) and o. =0.75 (T=2.188 K). The solid line
represents analysis of theoretical calculations presented in
Ref. 15.
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gard, since the effective aspect ratio, defined as
I' = D/2d„where D is the diameter of our ceII and d,
the boundary-layer thickness, is relatively large
(I —20 for a-=0.49).

Apart from the absolute value, the trend of
Na, „,(a.) is clear and striking, varying nearly inverse-
ly with the Prandtl number. Our attention was drawn
to the earlier theoretical study of Gershuni and
Zhukhovitskii, 's which is able to predict a lower bound
for instability and the corresponding Prandtl-number
dependence. This lower bound is found from minimi-
zation of an expression relating various parameters of
the problem which holds at the stability boundary.
Specifically, this expression is of the form
Na2, „=A +B/a2, w.hich imphes that the critical Ray-
leigh number becomes nearly independent of Prandtl
number when the latter is large, but that the flow be-
comes strongly stabilized as the Prandtl number is re-
duced below unity. Here the coefficients A and B are
functions of the wave number of the convection, k,
and another parameter u characterizing deep penetra-
tion of the disturbances. A double minimization with
respect to a and k is performed (at fixed Prandtl
number), and the results are shown as the solid line in
Fig. 4, together with our experimental results. We
refer the reader to Ref. 15 for specific details of the
problem. Again, we wish to make clear that some cau-
tion must be exercised in making quantitative compar-
isons of the absolute Rayleigh numbers, considering
the uncertainties involved. On the other hand, the
trend of the Prandtl-number dependence, i.e., the
strong stabilization accompanying a reduction in a, is
clear, and our measurements show gratifyingly close
correspondence with the predicted behavior.

This experiment is capable of extension in several
directions. Preliminary measurements show that the
results are affected by rotation, and theoretical work
by Hall is in progress to accompany the experiments.
Also, the Prandtl-number dependence of Na, „,can be
extended to very low values of a by use of mixtures of
sHe in superfluid 4He, and to higher values of a. by
means of classical fluids such as water (where visuali-
zation of the convection patterns would be possible).

After submitting this manuscript we received an in-
teresting preprint containing further theoretical de-
velopments on the modulated Benard problem. '6
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