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The Landau theory of shape transitions in hot rotating nuclei is introduced and the universal
features of such transitions are derived. The phase diagram of the excitation energy versus angular
momentum J for nuclei with prolate ground states shows a transition line from triaxial to oblate
shapes. The transition is first order for small values of J and becomes second order above a certain
value which is the analog of the tricritical point. Nuclear shapes change very rapidly from near pro-
late to oblate in the vicinity of this point. The theory is used to calculate the phase diagram of the

186Er nucleus.
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Growing experimental information is presently be-
coming available on the equilibrium shapes of highly
excited nuclei formed in heavy-ion reactions."? The
energy E* dissipated in such reactions is usually ac-
companied by an angular momentum transfer J. Thus
E* and J or their intensive partners—the temperature
T and the angular velocity w—are the relevant macro-
scopic parameters controlling the shape of the hot ro-
tating nucleus.

The high level density of hot nuclei warrants a sta-
tistical treatment. The theoretical analysis of nuclear
shape transitions is usually based on some version of a
finite-temperature mean-field description, e.g., the
shell-correction Strutinsky procedure® or the thermal
Hartree-Fock approximation,* etc., in which a trial free
energy at a given 7 and w is minimized. In this Letter
we introduce a unified framework based on the Lan-
dau theory of phase transitions® in which the most
relevant and universal results of any microscopic
mean-field theory of nuclear shape transitions at finite
T and » can be incorporated. The framework offers a
useful and economical parametrization of the results of
microscopic calculations and singles out a small num-
ber of combinations of the parameters upon which the
behavior of the equilibrium shape depends. Below we
summarize the main results of the approach; for de-
tails cf. Alhassid, Levit, and Zingman.®

The trial free energy of the rotating nucleus in a
mean-field theory is a function of the single-particle
density matrix p, F=F(T,»,p). Out of the infinitely
many variational parameters represented by p the most

I;=3,{1o(D) +1;(N(axa) P} + [R(DNa+D(D(axa)?P},.
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crucial for the description of shape transitions are the
quadrupole deformation parameters ay,, so that F can
be reduced (cf. Levit and Alhassid’) to a function
F(T,w,a,,). a, here represent, e.g., the average
quadrupole moment in the Hartree-Fock approach or
the shape parameters of the potential in the Strutinsky
calculations, etc.

The dependence of F on a,, can be determined
from symmetry considerations by use of rotational in-
variance. It is convenient to let w be a vector along an
arbitrary direction in space. The free energy F = (H)
=TS —w-(J) is then F=F(T, @, a;,) and in the ter-
minology of the Landau theory describes a statistical
system with a quadrupole order parameter in a vector
field .

F is a scalar and can depend only upon invariant
quantities constructed out of a,;, and w. The w-
independent invariants are the standard [aXxa]‘®
~B? and [(aXxa)?® xa]'® = g3 cos3y, where 8 and
v are the Hill-Wheeler parameters in the intrinsic
frame. The lowest w-dependent invariants are second
order in w, e.g., [wxw]® [(0xw)Pxa]® [(o
xw0) P x (axa)P]® Assuming the analyticity of F
and small w we write in Cartesian coordinates

F(T, @, a)

1

=F(T,0=0,a)— 2

i 1;(T, a)w,0;, (1)

iWj=1

where [;; is the moment of inertia tensor built from
the «. Its general form to second order in « is
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The first term on the right-hand side of (1), the free energy at =0, can be written to fourth order in « as

F(T,w=0,a,,)=Fo(T) +A(T)p*~ B(T)p’cos3y + C (T)B*.

The general temperature dependence of the coeffi-
cients A, B, and C (Fj is irrelevant in the minimiza-
tion) was investigated in Ref. 7 with the following
results. For stability one must require C(7T) > 0 and
nuclei with deformed ground state must have
A(T) <0 at low temperatures. The prolate-oblate
asymmetry requires B (T)=0. For definiteness we will
discuss the more frequently occuring prolate case
B(T) > 0. When T increases 4 (T) changes sign at
some T =T, which is usually between 1 and 2 MeV.
The topography of the free-energy surface given by
(3) is controlled’ by the dimensionless combination

T=AC/B?

which is monotonic in 7T — T, in the vicinity of 7.

The free energy (1) depends on 83, v, and the orien-
tation angles () relative to the rotation axis . Mini-
mizing with respect to ) one finds that the principal
axis with the largest moment of inertia must be paral-

(4)

F(T,0,a,,) = Fo(T) + 4 (1)~ B(T)B’ cos3y + C(T)B* — 71, (B,y.T)w?,

where

I, =1,(T) = 2R (T)Bcosy +2I,(T)B%+ 2D (T) g% sin’y

with 7, R, and D redefined to absorb various numeri-
cal constants. The R term here has the leading shape
dependence of the rigid-body moment of inertia while
the D term alone would represent the leading irrota-
tional moment of inertia. In generic nuclear situations
R is not zero and the lowest-order term, — 2R B cosy,
plays a dominant role. The term 2/,8% can be com-
bined with 4 8% and need not be considered separately.
Below we will study the limit D =0 and comment on
the D %0 case at the end.

Minimizing (5) one finds that at negative values of
7, Eq. (4), i.e., at low T and not too large w, there are
seven extrema of (5) in the entire (B, y) plane which
are located symmetrically according to the y = — 1y in-
variance of (5). When D =0 the condition I, > I,,.1,,
selects those extrema which fall into the sector |y]
=120° only. At negative 7 there are three such extre-
ma, one oblate (y= —180°) and two triaxial related
by the y = —+vy symmetry. Only one of the latter
should be considered since they both give the same
shape up to a rotation by 90° around the z axis. We
choose to work in the sector —180°=<+y =< —120°.
For B >0 in (5) and 7 < 0 the triaxial extremum is
the stable equilibrium shape while the oblate is a sad-
dle point.

Letting * now increase towards positive values for
fixed @ one finds crucial differences depending on
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lel to w. In order to facilitate this condition it is con-
venient to call that axis z, define 8 and y with respect
to this axis, and let y vary over the entire plane,
—180° =y =< 180°. With this convection y=0° and
v=—180° describe, respectively, prolate and oblate
shapes rotating around their symmetry axes while
y= +120° and y = + 60° represent, respectively, pro-
late and oblate shapes rotating perpendicular to their
symmetry axes. Minimizing F in the entire 8-y plane
one should select only those minima which have mo-
ments of inertia obeying the condition 1,, > T S
i.e., with the largest / along . We emphasize that our
choice of w parallel to z is different from the standard
(where @ is parallel to x). Thus a shape 8,y in our
convention is described by 8, — (y+120°) in the
standard one. We note that the calculational advan-
tages in the present case are overwhelmingly for this
change of the convention.® With  parallel to z ex-
pressions (1)-(3) give

()
(6)

! whether o is smaller or larger than
w.=—(B/C)(B/R)V™ @)

For fixed w/w.>1 and 7 increasing the triaxial
minimum moves towards the oblate saddle point and
coincides with it when r reaches

r=2[1- (0/4o.— 1)) (®)

When 7 increases beyond (8) the oblate shape be-
comes and remains the only stable minimum. We
show this on the right-hand side of Fig. 1. Recalling
the the y — —y symmetry one finds that the topogra-
phy of F, Eq. (5) when 7 crosses (8) is typical of
second-order transitions where two equally deep sym-
metry-related minima coalesce with the third extre-
mum—the saddle point.

When w/w, < 1 the initial location of extrema at low
r is similar to the case w/w. > 1. When 7 reaches (8)
the oblate saddle point turns into a local minimum but
the triaxial minimum is still separated from it. Instead
when 7 increases past (8) a new triaxial saddle point
emerges out of the oblate and moves towards the old.
The two coalesce and disappear when 7 reaches

9

r=%(1+30¥wl).
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FIG. 1. Motion of the saddle points in the 8-y plane with changing 7 and fixed w/w.. The z axis is parallel to @ and B is
measured in units of B/C. On the right a second-order transition is shown for o/w.= 2 with dots denoting a global minimum
and asterisks a saddle point. On the left a first-order transition is shown for w/w.=0.7 where notation is as on the right but in
addition open dots denote a local minimum.

Above (9) only the oblate minimum remains. This motion of extrema is shown on the left-hand side of Fig. 1.
Obviously (8) and (9) define the boundaries of a ‘‘coexistence’’ region where both triaxial and oblate shapes are
local minima. At a certain value of 7 in between (8) and (9) the free energies of the two minima become equal
and the global minimum shifts discontinuously from triaxial to oblate in the way typical of the first-order transi-
tions. The value of 7 at which this happens is given by a complicated expression® which we do not record here. It
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FIG. 2. Phase diagram in variables 7 and w/w.. The tricritcal point (at w/w.=1) is denoted by a cross. To its left is the
first-order transition line (dash-dotted) and to its right is the second-order transition line (solid). The other two solid lines, to
the left, are the stability limits of the triaxial and oblate phases. Also shown are 8 and y contour lines where 8 is measured in
units of B/C. Inset: The first-order transition region.
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FIG. 3. Phase diagram in variables E*,J for '*Er. Lines
as in Fig. 2. On and above the second-order transition line
the shape is oblate (y = — 180°).

goes to 7=+ for w— 0. Note that when B(T) is
small near the transition temperature the above transi-
tion is almost continuous as in the example of Ref. 7.

The above results are summarized on the phase dia-
gram, Fig. 2, with the lines of constant equilibrium 8
and y drawn in. The solid line for w/w. > 1 is the line
(8) of second-order transitions and separates the triax-
ial ‘“‘phase’’ below from the oblate phase above. For
w/w, < 1 the two solid lines denote Egs. (8) and (9)
which define the coexistence region and give the lower
boundary of the oblate phase and the upper boundary
of the triaxial phase, respectively. The dash-dotted
line denotes the first-order transitions. It meets the
second-order line at w=w, and r =7, = T%‘ Phase di-
agrams similar to Fig. 2 are observed in, e.g., liquid
crystals and antiferromagnets.>® There the point simi-
lar to our w=w,, =7, is known as the tricritical
point.

In finite nuclear systems it is probably difficult to
observe the order of the transition. More important is
the rapid change from almost prolate to oblate shape in
the vicinity of the tricritical point, clearly seen from
the behavior of the lines of constant y in Fig. 2.

The phase diagram in the variables 7 and w/w. has
universal character. However, the precise dependence
of 7 and w on the experimentally accessible E* and J is
not universal and must be studied in the context of
particular nuclei. We demonstrate such a study for
166gr We found the functions 4 (T), B(T), and
C (T) by fitting the form (3) to the free-energy sur-
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faces at w =0 calculated by a finite-temperature Stru-
tinsky procedure. For the w-dependent terms in (5)
we assumed the rigid-body moment of inertia setting
Io=2mR¢/S, R =(5/16w1y)"?, and D=1,=0. Re-
lating 7 and @ to E* and J, we have constructed the
phase diagram shown in Fig. 3. The angular momen-
tum of the tricritical point is J. = 7% and its tempera-
ture is 7,=1.7 MeV. In the region J=10-20%,
E* =60 MeV, where !%°Er was recently studied experi-
mentally! 2 the shape is very sensitive to the values of
E* and J offering a possible explanation of the ob-
served rapid transition from almost prolate to an oblate
shape.

Our calculations for '%Er can be further improved
by use of more elaborate mean-field schemes. It ap-
pears, however, that at the present stage the qualita-
tive framework presented above should be sufficient
to stimulate more experimental studies.

The generalization of our analysis to the case D=0
is straightforward. The qualitative behavior is similar
to the case D =0 but there are important quantitative
differences in the large-w region (cf. Ref. 6).
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