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Inconsistency of Feynman Rules Derived via Path Integration
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We show that the Feynman rules in the covariant ~ gauge, the Coulomb gauge, and the axial
gauge, in the generally adopted form derived via the Faddeev-Popov formalism, are inconsistent
with one another. We suggest that they be replaced by the canonically derived ones, which are con-
sistent. In particular, the Feynman rules in the Coulomb gauge contain the contribution of the
anomalous Coulomb interaction, and the Feynrnan rules in the axial gauge with the principal-value
prescription contain the contribution of ghost loops.

PACS numbers: 11.10.Ef, 11,15.Bt

In recent years, the formalism of path integration
has become the standard way to quantize non-Abelian
gauge field theories. This formalism enables one to
obtain Feynmam rules for non-Abelian gauge field
theories in various gauges, e.g. , the covariant ct gauge,
the axial gauge, and the Coulomb gauge. ' In this
Letter, we shall show that such derived Feynman
rules, in the forms generally adopted, are inconsistent
with one another. We also show that canonical quanti-
zation leads to unambiguous Feynman rules in the
Coulomb gauge as well as those in the axial gauge.
These canonically derived rules are different from the
corresponding ones derived via the straightforward ap-
plication of the Faddeev-Popov formalism. 2 The
former rules are also consistent with those in the co-
variant o. gauge.

Let us begin with the Coulomb gauge. In 1962,
Schwinger3 deri~ed, in the Coulomb gauge, the quan-
tum Hamiltonian of non-Abelian gauge field theories.
This quantum Hamiltonian differs from the classical
one as it contains additional terms originating from the
ordering of operators. We shall call such additional
terms those of anomalous Coulomb interaction. These
anomalous terms, later rediscovered by Christ and
Lee5 6 in slightly different forms, are not included in
the usual path-integral formulation. ' We shall show
that these anomalous terms are indeed needed for
gauge invariance. Specifically, we have found that cer-
tain Feynman integrals in gauge-field theories have
singular behaviors which render the conventional
proof of gauge invariance invalid. This singular
behavior cannot be handled by dimensional regulariza-
tion, to name one method. By taking care of this
singular behavior with cutoffs, we find the existence of
additional terms which in the Coulomb gauge are pre-
cisely those given by the anomalous Coulomb interac-
tion terms.

The gauge invariance of physical amplitudes can be
established with the aid of the theorem of equivalence

of Feynman rules6 7: Let the gluon propagator be

—i [g„„a~(k—)k„—b„(k)k„]/(k +is),
with a„(k) = —b„( —k), and let the ghost-ghost-
gluon vertex be [(a k) —1]k"—k2a", and the ghost
propagator be i/(k2+ie); then the physical scattering
amplitude is independent of a„(k). In particular, the
set of Feynman rules with any a„(k) is equivalent to
that with a„(k)= (1 —n)k„/(2k2), in which the
gluon propagator is

—i[g „—(1 —u)k„k„/k ]/(k +ie)
and ghost vertex is —kt'. This latter set is that in the
covariant n gauge. There is, however, a point which
appears to have been overlooked so far. The propaga-
tor for the gauge vector meson in the Coulomb gauge
is given by

D„'„(k)= D„'„(k)+ k„~„+k„~„,
where

ko5vo ——, kv
1

a„(k)=-
k2+ i& k2

and where

DF„(k)= —ig„„/(k'+ ie)

is the propagator for the gauge vector meson in the
Feynman gauge. In particular, for p, = v = 0, (1) gives
DQ(k) =i/~k~ which does not vanish in the limit
~ko~ ~ with ~k~ fixed. As a consequence, integrals
over ko may bc singular and must be handled with
care. Indeed, if one ignored, incorrectly, this possibili-
ty of divergence, one would be led to conclude, with
the aid of the theorem of equivalence, that the Feyn-
man rules in the Coulomb gauge and those in the co-
variant a gauge, both derived via path integration,
were equivalent. To take into account this singular
behavior in ko, we use, instead of D', the cutoff prop-

l agator

D„'„(M,k) = D„„(k)+ (k„A„+k„b,„)M /(M2 —k —ie), (4)
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where M is an introduced mass. This latter propagator vanishes in the limit kp ~ with M and k fixed. It is
therefore justified to conclude, with the aid of the theorem of equivalence of Feynman rules, that use of D to-
gether with the corresponding ghost-ghost-gluon vertex

qp5gsp M
(5)

q2 M2 —q2 M2 —q2

gives the same on-shell amplitudes as those given by the Feynman rules in the covariant n gauge. [The ghost
propagator has been included in (5).] This is true for any M, and in particular for M very la~re. In the limit
M ~, D'is equal to D'. However, this does not mean that we may make the replacement of D'by D' (togeth-
er with the replacement of ghost vertices) in the Feynman integrals. This is because the limit of an integral is not
necessarily equal to the integral of the limit of its integrand. In other words, the limit M ~ should be taken
after the integration over kp has been carried out. It turns out that this makes no difference at the one-loop level.
For example, we usually set the integral f dqp qp/(q2+ ie) equal to zero by the reason of symmetric integration.
This conclusion does not change if we introduce a cutoff factor of M2/[M2 —(q+ k)2], say. This can be easily
proved if we express the integral over qp by one over time:

dt F(t)5~(t)eJ ~ 2~ q2 M2 (k+q)2 J

5~(t) = ,'iMe —~~'~ M )& 1,

where

e(t) = t/(t(. (9)

Because of the factor e ~~'~ in (8), the dominant in-
tegration region for the time integral in (6) is
ltl=0(l/M). Thus we may, in the limit M—lkot .
approximate e 0 in (6) by unity. Since F(t) is an
odd function of t and 5~(t) is an even function of t,
the integral on the right-hand side in (6) approaches
zero in the limit M

This is, however, no longer true for diagrams of two
or more loops. Consider, for example, the double in-

tegral

where F(t) and 5~(t) are the Fourier transforms
(with respect to time) of qp/q2 and M/(M2 —q2

+ie), respectively. More precisely,

F( t) = ——' ie Iqll le

precisely the contribution of the anomalous terms of
Schwinger.

Next we turn to the axial gauge. In the temporal ax-
ial gauge, the gluon propagator in the momentum
space is singular at kp= 0. (There is a similar singular-
ity in the case of spatial axial gauge. ) The path-
integral formulation is unable to determine precisely
how to define the axial-gauge propagator in the neigh-
borhood of kp= 0. One prescription is to use the prin-
cipal value. Such a prescription has always been
suspect, and for a good reason —it is wrong. To see
this, let us note that we may use, by the theorem of
equivalence of Feynman rules, the following gluon

k09'0
2 dqp dkp,(k'+ i e) (q'+ ie) (k+ q)'

(10)
k+q

which appears in the scattering amplitude correspond-
ing to the diagram in Fig. 1(a). Again, this integral is
usually set equal to zero by symmetric integration.
However, this is no longer true once we introduce the
cutoff factor M'/[M' —(k+q)']. This is because
each of kp/k and qp/q contributes a factor e(t).
Since ez(t) =1 is an even function of t, the corre-
sponding integral over t is nonzero in the limit
M ~. Therefore, the anomalous terms first appear
at the two-loop level. Indeed, we have explicitly con-
firmed that the g2 term of the vacuum diagrams and
the g~ term of the gluon self-energy diagrams contain

FIG. 1. Solid lines represent gluons, with T, L, and 0
denoting transverse, longitudinal, and temporal polariza-
tions, respectively. Dashed lines represent ghosts.
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propagator:

1
. , &~.—(~ ok. +~.ok„)— . +

k + le' " " ko+ l6 ko —Ie
+ k„k„— +—1 1 1

(i,+ I.)' (k, —I.)'
!

together with the ghost-ghost-gluon vertex

Ik kohl~+ & k~

(k'+ i e') (k02 +e')

[The ghost propagator has been included in (12).j In
the limit e —0, this propagator is traditionally regard-
ed as the temporal axial-gauge propagator in the
principal-value prescription. Furthermore, the expres-
sion in (12) becomes, in the limit e 0,

—in„P ( I/ko) .

Since

goo N

dko P
k +an=l

for %~2 and a„&a if n&m, it may appear that one
need not, in the axial gauge, take into account ghost
loops, as asserted by the path-integral approach, This
conclusion is again erroneous. This is because the
Feynman integrations are singular at k0=0 if e is set
equal to zero; thus the limit e 0 must again be han-
dled with care. It is interesting to compare the situa-
tion here with that in the Coulomb gauge, where the
integration is singular at ko=~. In that case, we in-
troduced the cutoff parameter M, setting M ~ only
after integration. In the axial gauge, the integration is
singular at k0=0, and the parameter e in (11) and

(12) serves the same function as M in the Coulomb
gauge. Therefore we must take the limit e 0 after
the integration has been carried out, not before. In
other words, the limit e 0 should be taken for the
Feynman integral, not the integrand. As a result, both
the ghost and the gluon with temporal polarization
give nonzero contributions to the scattering amplitude.
Indeed, the contributions of the ghost and the gluon of
temporal polarization also appear at the two-loop level.
Some examples are illustrated in Figs. 1(b)-1(d). It is
easy to see that the amplitudes corresponding to these
diagrams, not included in the traditional principal-
value prescription, are nonzero. To verify this for dia-
gram 1(b), we note that in the integration region
where ko and qo are both of the order of e, DLL and
D00 of (11) are of the order of e 2 and eo, respective-
ly. Furthermore, a vertex factor in Fig. 1(b) is of the
order of e. Therefore, the contribution of this integra-
tion region is of the order of unity as e 0. For dia-
gram 1(c), there is one fe~er DLL, but this is compen-
sated for by each of the vertex factors being of the or-
der of unity instead of e. In diagram 1(d), we need to
keep only the second term in the numerator of (12)
for the ghost-ghost-gluon vertex, and the rest of the
consideration is the same as that for diagram l(c).

It is possible to choose the axial-gauge propagator to
be'

i l,q n„k„n„k„k~k„D„'„=— g~y
— + +

+ jq ko+ lE ko —l& k02 + IE

The ghost-ghost-gluon vertex corresponding to (13) is

(13)

(-..—;,k„»«, + .). (14) where t) is the larger of xo and xo, for the transverse
gluon,

For such a vertex, the integrand has no singularity at
ko=ie Therefor. e, we may choose to close the con-
tour integration in the upper-half ko plane. In other
words, there is, in this prescription, no contribution
from ghosts. However, we still have to take into ac-
count the contribution of temporal gluons.

Finally, we mention that it is possible to choose the
gluon propagator in such a way that Do„ is strictly zero
for all p, . From the correspondence formula between
a scattering amplitude in the temporal axial gauge and
that in the Feynman gauge, we find that an alternative
prescription is as follows: For the propagator of the
longitudinal gluon,

DLI (x,x') = —I&"'(x—x') r),

d'k 1
Dii(x, x ) = i ', , 4 2

5(~—
(2~) k + ie'

k;kJ

k

In addition

Do„(x,x') = D„o(x,x') = 0, (17)

and there is no contribution from ghost loops. Note
that the propagator (15) is not invariant under time
translation, and therefore has no Fourier transform. It
is also the propagator given by Caracciolo, Curi, and
Menotti'0 in their study of the Wilson loop.
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