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%e measured the analyzing power A and the spin-spin correlation parameter A„„,in large-P~
proton-proton elastic scattering, using a polarized-proton target and the polarized-proton beam at
the Brookhaven Alternating-Gradient Synchrotron. %e also used our polarimeter to measure A at
small Pi at 13 GeV with good precision and found some deviation from the expected 1/Pi, b

behavior. At 18.5 GeV/c we found A„„=( —2+ 16)% at Pii =4.7 (GeV/c)i. Comparison with
lower-energy data from the Argonne Zero-Gradient Synchrotron shows a sharp and surprising en-
ergy dependence for A„„atlarge P&.

PACS numbers: 13.85.0z, 13.SS.+e

Polarized proton beams and polarized-proton targets
allow the direct study of spin effects in high-energy
strong interactions. Since the polarized-proton beam
first operated at the Argonne Zero-Gradient Synchro-
tron (ZGS) in 1973, many interesting and unexpected
spin effects have been discovered, such as the large
spin-spin force in high-P~2 proton-proton elastic scat-
tering. '2 Recent Brookhaven Alternating-Gradient
Synchrotron (AGS) measurements3 of the analyzing
power A in p+pt p+p at 28 GeV/c in the P, re-
gion up to 6.5 (GeV/c)2 have also shown large one-
spin effects. In 1984 we scattered the new AGS 16.5-
GeV/c polarized proton beam from our polarized-
proton target and measured A„„in pl + p&

—p+ pat a
fairly small Pi with limited precision. The energy,
intensity, and polarization of the AGS polarized beam
have now all increased significantly. These increases
allo~ed us to study p-p elastic scattering in pure
initial-spin states at P„b=18.5 GeV/c and P~~ =4.7
(GeV/c)2. We found that the spin-spin correlation
parameter A„„appearsto change rapidly with energy at
this fixed P~ value.

The experiment was run at the AGS with an ac-
celerated polarized-proton beam of about 1.8 x 10'
protons per pulse at 13, 16.5, 18.5, and 22 GeV/c,
with polarizations varying between 40'/0 and 65%. We
used an extracted beam in the D beam line with an in-
tensity of up to Sx IOs polarized protons per 2.2.-sec
pulse and scattered it from the University of Michi-
gan's polarized-proton target (PPT) as shown in Fig. 1.
Steering magnets were servo-coupled to a split-plate
ion chamber to reduce the horizontal beam motion.
The beam position and the 13x 13-mm2 FWHM
(H x V) spot size at our PPT were monitored continu-
ously by four segmented wire ion chambers (SIC's),
and the average beam position was kept centered to
within +0.2 mm. The relative beam intensity was
measured with an ion chamber and three scintillation-
counter telescopes M, N, and L, which counted secon-
dary particles.

The acceleration of polarized protons in the AGS re-
quired major hardward modifications in almost every
part of the accelerator. A polarized-H ion source was
constructed, which now operates at 25 p,A.5 A 200-
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MHz radio-frequency quadrupole (RFQ) was built to
replace the Cockcroft-Walton 760-keV preaccelerator.
During each main-ring acceleration cycle, as the ener-

gy y increased, there were about forty strong depolar-
izing resonances, which occurred whenever Gy be-
came equal to any horizontal-magnetic-field frequency
[G = (g —2)/2 is 1.79 for a proton]. The five strong
intrinsic resonances (Gy = 0+ i, 12+ v, 36 —v,
24+ v, and 48 —v) were jumped with ten fast-pulsed
quadrupole magnets which shifted the vertical betatron
tune i with a 1.6-1M, sec rise time. About 35 strong im-
perfection resonances (Gy=6, 7, . . . , 40, 41) were
corrected with the appropriate harmonic of horizontal
field produced by 95 correction dipole magnets. We
discovered that some of the strong depolarizing reso-
nances could be corrected ~ith either their primary
harmonic (e.g. , the 27th harmonic for Gy = 27) or by
use of a harmonic which beats6 against an integer mul-
tiple of the AGS periodicity of 12 fe.g. , the 9th har-
monic for Gy =27 since 9= (3x12)—27]. We also
discovered that a 20'/0 polarization loss near 14 GeV/c
appears to be caused by interference between the
Gy =36—v intrinsic depolarizing resonance and the
Gy - 27 imperfection resonance. By using slow quad-
rupoles to shift the tune v from its normal value of
8.75, we were able to separate these two resonances
partially. This significantly reduced the polarization
loss, allowing a beam polarization of about 50% up to
high energy.

A 200-MeV polarimeter measured the beam polari-
zation at the end of the linac. A fast internal polarime-
ter measured the relative polarization during the AGS
acceleration cycle. The high-energy polarimeter shown
in Fig. 1 measured the absolute polarization by observ-
ing the left-right asymmetry in proton-proton elastic
scattering at Pi2 =0.3 (GeV/c) . The maximum po-
larization in the AGS was about 65'/o at 13 GeV/c,
about 50% at 18.5 GeV/c and about 46'/o at 22 GeV/c
with a peak accelerated intensity of about 2.1x 10'0

protons per pulse. The vertical bends in the D line
caused a 50/0 polarization loss; our average beam polari-
zation was (35+3)'/0 for the main data run at 18.5
GeV/c.

The polarized-proton beam ~as scattered from the
polarized-proton target' (PPT). This target used the
dynamic nuclear polarization technique at a tempera-
ture of 0.5 K produced by a 3He-4He mixture evapora-
tion cryostat. Ammonia (NH3) target beads, which
have a free-proton density of about 0.1 g/cm3, were
contained in a cylindrical copper cavity 29 mm in di-
ameter by 40 mm long. The 2-mm-diam NH3 beads
were irradiated at 90 K with about 5&&10'6 electrons/
cm2 from the Massachusetts Institute of Technology
Bates linac to produce radiation damage centers ~ith
spin-unpaired electrons. s A 2.5-T magnetic field and
the 0.5-K temperature polarized these electrons in our
PPT. Microwaves of about 70 GHz were used to
transfer the electron polarization to the free hydrogen
protons. We continuously monitored the target polari-
zation PT using a 107-MHz NMR system with a + 3'/0

absolute uncertainty. The maximum target polariza-
tion was about 70% and the average polarization was
(51 + 3)%

Elastic-scattering events were detected by the dou-
ble-arm FB spectrometer shown in Fig. 1. The angles
and momenta of both outgoing protons were measured
by use of six magnets and the forward and backward
eight-channel scintillation-counter hodoscopes. A p-p
elastic-scattering event was defined by a sevenfold FB
coincidence between the appropriate channels of the
F=FOFiF2F3 arm and the B=BiB2B3 arm. The
momentum bite (hP/P) was about +5'/0, while the
four (25 x 35 cm) 83 counters and the four (7.5 x 14
cm) F3 counters each defined a center-of-mass solid
angle of about 10 sr. The F2 and B2 counters were
each split in half vertically, giving eight-channel reso-
lution. The other counters were overmatched to allow
for beam divergence, magnet variations, multiple

0 ) Q 3m
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I.H2 TARGET L.3

F10. l. Layout of the experiment. The polarimeter on the left used a liquid-hydrogen target to measure the left-right asym-
metry in p.p elastic scattering. The polarized-proton beam then scattered in the vertically polarized-proton target (PPT) and
the elastic events ~ere detected by the spectrometer which contains magnets for momentum analysis and the F and 8
scintillation-counter hodoscopes. The M, N, and K counters are intensity monitors, awhile the S&, S2, 54, and S5 segmented
wire ion chambers monitored the beam's position, size, and angle.
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Coulomb scattering, and finite target size. Accidental
coincidences were continuously monitored by several
delayed FB coincidence circuits. The data at each P J
point were corrected by use of the measured accidental
rate of about 0.1'/o.

We covered a P~ range of about 0.6 (GeV/c)2 with
our eight-channel hodoscope. %e varied the coin-
cidence logic timing and the magnet currents about the
calculated values to assure that we had a clean elastic
signal at the correct P~2 value. We measured the back-
ground rate for nonhydrogen events by replacing the
normal PPT beads with Teflon beads which contain no
hydrogen. %e corrected the data by the measured
nonhydrogen background correction factor of 1.15
+ 0.03 at the large-P~~ 18.5-GeV/c point and of

1.07 + 0.01 at the smaller-P, ' points.

The polarized-proton beam was scattered from the
polarized-proton target in the horizontal plane in each
transverse beam spin state [i = t or j (up or down)]
and each transverse target spin state (j = t or J ). We
then obtained the normalized event rates N (i,j ) by
measuring the quantities

N(ij ) =E(ij )/l(ji)
For each (beam, target) spin state (ij ), E(ij ) is the
number of FB elastic events corrected for accidentals
and nonhydrogen background, and I (ij ) is the relative
beam intensity obtained by averaging of the monitors
M, N, E, and Ion, along with the F and 8 single-arm
rates. The spin-spin correlation parameter A„„andthe
analyzing power A were obtained from our measured
values of N (ij ) by the following equations:

A
1 N(t t)-N(1 j)-N(j t)+N(j j)

Pap, N(t t )+N(t j )+N( j t )+N( j j )
'

1 N(t t )+N(t J) N( J
—t ) —N( j j )

N(t t)+N(t j)+N(j t)+N(j j)
1 N(t t) —N(t j)+N(j t) —N(j j)

Pr N(t t )+N(t j )+N( J t)+N( J J)
where Pa and Pr are respectively the beam and target
polarizations. The minus signs occur because our for-
ward protons scatter to the right, which is opposite to
the Ann Arbor convention.

Our results for proton elastic scattering are listed in
Table I along with our estimated uncertainty, which in-
cludes both statistical and systematic errors. Note that
As and Ar, which are respectively measurements of A

with the polarized beam and with the polarized target,
are generally equal within our errors. This provides a
good test of our systematic uncertainty. A is the
error-weighted average of Att and Ar.

The A„„dataat small P2 agree well with the 12-
GeVlc ZGS data. ' The small-error 13-GeVlc point at
P~2 =1.5 (GeV/c)2, taken together with previous
16.5-GeV/c data~ at P2 =2.2 (GeV/c)2, suggest that
A„„is independent of energy at medium P~2. The
high-precision measurement of Ar at 13 GeV/c was
used to calibrate the beam polarization by constraining
As to be equal to the measured value of Ar. This al-
lowed us to measure A at P~2 =0.3 (GeV/c)2 simul-
taneously using the high-energy polarimeter. The
beam polarization at 18.5 GeV was obtained from the
high-energy polarimeter by our interpolating A to be

(2)

(4.0+0.3)'lo at P =0.3 (GeV/c)2. Our new 13-
GeV/c datum point at P~~ =0.3 (GeVl c)2 agrees with
the 12-GeV/c data of Kramer et al.9 and the 14-GeV/ c
data of Borghini et ai. ,

'0 but does not agree with the
12-GeVlc data of Borghini et al. " Our new measure-
ment seems to disagree with the possible 1/P„bdepen-
dence'2 of A at small P~2. The possible deviation from
1/P~, b behavior is supported by an experiment done
with our internal polarimeter which shows no variation
in the measured asymmetry above 6 GeV/c, except for
the sharp polarization loss near 14 GeV/c discussed
earlier.

The new large-P~2 result on A„„atP~,b= 18.5 GeV/c
is plotted in Fig. 2 along with lower-energy ZGS
points. 2 The most notable feature of this plot is that at
a fixed P~2 of 4.7 (GeV/c)2, A„„hasa very strong
dependence on incident energy. This sharp change in

is quite surprising. Several theoretical models
predicted oscillatory behavior in A„„,but none predict-
ed that it would change in this way. Troshin and Tyu-
rin'3 predicted that at a fixed angle of 90' c.m. , as the
energy is increased, A„„wouldhave a damped oscilla-
tion about the value —,'. They calculated that A„„(90'

TABLE I. Data on A and 3„„.
~lab

(GeV/c)

13
13

16.5
18.5

I g

[(GeV/c)' 1

0.3
1.5

1.6
4.7

Ag
('/o)

4.7 + 0.3
Set equal

to Aq
9+3

—2+9

Ap
(o/o)

13.0+ 0.6

(o/o)

4.7 + 0.3
13.0 + 0.6

11+2
1+5

('/o)

8.6 + 0.9
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FKJ. 2. Plot of the spin-spin correlation parameter A„„as
a function of incident laboratory momentum for proton-
proton elastic scattering at P~2 =4.7 (GeV/c)'. The error
bars include both statistical and systematic errors. The
dashed line is a hand-drawn curve to guide the eye.

GeV/c is high enough to reduce the spin-spin effects
while 12 GeV/c is not. Moreover, the large one-spin
effects recently found at the AGS' at 28 GeV/c and

P~ = 6.5 (GeV/c) disagree with the A = 0 prediction
of perturbative QCD models and thus cast doubt on
the applicability of perturbative QCD at 18.5 GeV/c
and P~~ = 4.7 (GeV/c) . Now that the AGS polarized
beam has reached 22 GeV/c with 460/0 polarization, we
hope to extend these measurements to 22 GeV/c to
determine if A„„staysnear zero, oscillates up to be-
come large and positive again, or becomes negative for
the first time.
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c.m. ) would reach a minimum value of about 20% at

17 GeV/c. Brodsky, Carlson, and Lipkin'4 suggested
that the 90' c.m, p-p cross section oscillates about their

predicted s '0 behavior and then suggested that the

behavior of A„„is a reflection of this oscillation. it is

not yet clear how these and other's '6 fixed-angle pre-

dictions of oscillatory behavior are related to our ob-

served fixed-P ~~ behavior.
Another explanation of the possibly zero A„„comes

from comments made independently by Bethe" and

Weisskopf's when the large spin-spin effects were first

seen at the ZGS in 1978. They noted that at 12

GeV/c, the large A„„valuesonly appeared near 90'
c.m. and thus might be due to particle identify effects
near 90' c.m. rather than large P~z. We then did an ex-
periment2 where we held the scattering angle fixed at
90' c.m. and varied P 2 by varying the incident energy.
We found that the large spin-spin effects occurred at
exactly the same P~~ in both the 90' c.m. fixed-angle
experiment and the 12-GeV/c fixed-energy experi-
ment. This conclusively demonstrated that large spin-

spin effects only occurred when P 2 was large. Howev-

er, all of the large-P~~ ZGS data were fairly near to 90'
c.m. The new AGS point at P~~ =4.7 (GeV/c)2,
where /I, is 49'., is the first large-Pi2 measurement
of A« far from 90 c.m. Perhaps larle I'~ and prox-

imity to 90' c.m. are both required for large spin-spin

effects to occur. This could be tested with the AGS
polarized beam by measuring 90' c.m. elastic scatter-

ing near 18.5 GeV/c.
Another possibility is that spin effects decrease at

high energy as predicted by many perturbative QCD
models. This explanation must assume that 18.5
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