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Deconfining and Chiral Transitions of Finite-Temperature Quantum Chromodynamics
in the Presence of Dynamical Quark Loops
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Finite-temperature behavior of quantum chromodynamics is investigated with the Langevin tech-
nique including the dynamical quark loops. The deconfining and chiral transitions occur at the
same temperature. The strength of transition weakens initially as the quark mass decreases from
infinity, but at small quark masses it strengthens again and shows the characteristic of a first-order
transition. We estimate the inverse coupling constant at zero quark mass to be p, = 6/g, ' = 4.9-5.0
for four flavors on an 8' & 4 lattice.

PACS numbers: 12.38.Gc

It is an important question of quantum chromo-
dynamics to ask how the two basic features of hadron
dynamics at zero temperature, confinement of quarks
and spontaneous breakdown of chiral symmetry, will

disappear as temperature increases. For the pure
SU(3) gauge system the finite-temperature behavior is
now well established: It has a first-order phase transi-
tion separating the low-temperature confining phase
from the high-temperature plasma phase. ' lt has also
been shown within the quenched approximation that
the restoration of chiral symmetry takes place precisely
at the deconfining temperature. ' The coupling of
quarks introduces several nontrivial problems. For
heavy quarks it has been shown that the effect of
quark loops weakens the deconfining transition and
that its location shifts towards weaker couplings. One
of the questions is whether there remains a first-order
phase transition for light quarks. On the other hand,
we expect for a zero-mass quark the spontaneous
breaking of chiral symmetry. It has been shown in the
o--model analysis that there exists a first-order chiral
transition for the number of flavors NF ~ 3.4 We ex-
pect that this transition ~ould also become weak or
might even disappear when the mass of quarks be-

comes large. The relation between these two transi-
tions is also to be understood.

There already exist several numerical analyses at-

tempting to clarify these issues. s However, the nature
of the transition for light quarks is still controversial.
In addition to the poor overall statistics, the approxi-
mations used in the formalism for including dynamical
quark loops make it difficult to draw a definite con-
clusion from the simulations made so far.

In this Letter we attempt to elucidate the nature and
interplay of the deconfining and chiral phase transi-
tions as a function of quark masses in the presence of
dynamical quark loops. %e have applied the Langevin
technique6 ~ to the SU(3) gauge system with the
Kogut-Susskind action having NF =4 flavors on an
83X4 lattice. The advantage of this method is that it
does not involve approximations which could cause
unknown systematic biases and that the error of the
simulation is in principle under control. %e have ex-
amined the behavior of the system for a variety of
quark masses by carrying out the thermal cycle analysis
in the coupling constant at fixed quark masses. The
calculation took 350 h on the HITAC S-810/10 at
KEK [average operational speed is about 150 Mflops
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(flops=floating-point operations per second)] and 20
h on the S-810/20 at the University of Tokyo ( —300
Mfiops) .

Our simulation shows that the deconfining transition
at m~ = ~ smoothly continues into the region of small

m~. The strength of the transition initially weakens
when the quark masses decrease from m~ = oo, and for

m~ = 0.2-0.3 we cannot conclude the presence of a
first-order phase transition. For smaller m~, however,
the transition becomes stronger again and exhibits the
nature of a first-order phase transition at m~=0. 1.
Across this transition both the chiral order parameter
(XX) and the Polyakov line (0) simultaneously
jump, with the jump of the former becoming progres-
sively pronounced for smaller m~.

We now describe the simulation in some detail. The
effective action is given by

S,rr= —~ gtr(U~+ Up )+ )' ) ); (1)

where the first term represents the standard single pla-
quette action for the gauge variable U„„, and I'„de-
notes the pseudofermion variable with

(2)
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representing the Kogut-Susskind quark action. In or-
der to reduce the number of flavors to four, we used
the trick of setting )'„=0 on odd sites. s We refer to
Ref. 6 for the form of the Langevin equation and its
discretization in the fictitious time.

We have carried out the thermal cycle in P in steps
of AP=0. I at m~ =0.1, 0.2, 0.3, 0.5, and 1.0, and
20/hr iterations are made at each p with the Langevin
time step lid =0.01-0.002, depending on m~. 9 We
have checked that this is enough for thermalization.
The observables depending only on gauge variables
were calculated at every hv =0.1 and those depending
on quarks at every Sr = 0.2. For the latter we comput-
ed (D ')„„,for sixteen no's with the coordinate ei-
ther at the origin or at the midpoint along the axis.
The last 10/hi iterations were used for the average.

In Fig. 1 we show the average of the temporal Po-
lyakov line defined by 0 = tr(Q U„4)/3 and the chiral
order parameter (XX) = (trD ')/3 at several values
of the quark mass m~. It is seen that these quantities
jump or change rapidly when we heat up (or cool
down) the system. Figure 2 summarizes the position
of p at which the jump happened as a function of m~.

For a large enough m~, e.g. , m~ = 1.0 (m~/T, = 4.0)
the observed hysteresis (p=5.5-5.8) is consistent
with the first-order phase transition for pure gauge sys-
tem which occurs at p = 5.66-5.68.'o As m~ decreases,
the hysteresis of the thermal cycle weakens, and it
disappears at m~=0. 3 (m~/T, =1.2). This reflects
the weakening of the first-order deconfining transition
due to the Z(3)-breaking perturbation of dynamical
heavy quarks. 3

When we further decrease the quark mass to
m =0.1 (mq/T, =0.4), however, we again observe
the hysteresis. To see this point more carefully, we
extended our runs to 2 && 10~ iterations (r = 40), and in
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FIG. 1. Average values of (a)-(c) temporal Polyakov line
Re(&) and (d)-(f) the chirai order parameter (XX) as
functions of p at m~=1.0, 0.2, and 0.1 iii thermal-cycle
runs. Average is taken for 10~v «20 (hr =0.002 for
m -0.1 and 0.2, and hr = 0.01 for m, = 1.0). Errors shown
are statistical, estimated by taking account of the data of
autocorrelations. Triangles in (h) and (e) show the averages
for different runs with 4v = 0.01.
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FIG. 2. Phase diagram of the deconfining and chiral
phase transitions in (m~, p) plane. The upward (downward)
arrow shows the position of p at which Re(Q) and/or (XX)
jump, or change rapidly, in the heating (cooling) cycle.
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Fig. 3 we present Re(O) at every 500 iterations for
me = 0.1 and P = 5.1 in our heating and cooling cycles.
One can see that in the two runs the Re(Q) do not
show the trend of approaching each other. Probably
the most subtle point concerning the hysteresis analy-
sis is the question of critical slowing down towards
light quark masses. %e examined the autocorrelation
of the Polyakov line, Wilson loops, and XX while car-
rying out the thermal-cycle analysis, and found that
the relaxation time r, of the Polyakov line, defined to
be that at which the autocorrelation decreases to 10'/o

of its value at v=0, is 7, —1 for m~ &0.2 and
r, = 3-4 for m, =0.1 in the respective critical regions
(similar numbers are also obtained from the other
physical quantities). We found from the data for
m~ = 0.2-1.0 that, if there are no metastable states, the
heating and cooling data approach each other already at
r —(5-6)7,. Our data at m~=0. 1 do not show any
such tendency even after 7/r, = 40/r, —10. Therefore
~e regarded this as evidence that the phase transition
is first order.

The strengthening of the hysteresis in the Polyakov
loop towards smaller quark masses is accompanied by
an increasingly discontinuous behavior of the chiral or-
der parameter (XX). In Fig. 4 we plot the value of
(XX) at couplings just above and below the hysteresis
region. The value of (XX) is smaBer on the weak-
coupling (high-temperature) side of the transition with
its magnitude diminishing rapidly ~ith the quark mass,
while it stays finite on the strong-coupling (low-
temperature) side. The gap across the transition de-
creases approximately as —

m~ ', as expected. The
restoration of chiral symmetry is thus the main charac-
teristic of the transition at small quark masses, and
these observations lead us to conclude that the chiral
transition at ms = 0 is of first order and that it remains
so for a range of finite m, .
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g Ag —(g~2P/25) 3'~62 exp( —4~2P/25) (3)

for NF ——4, the deconfining transition temperature
aT, = —„' can be expressed in terms of AL, or of AMs
(MS denotes the modified minimal-subtraction
scheme) with the use of" AMs/AL =76.44 (jVF =4).
The transition temperature at m~ =O. l is then T, /

AMs = 3.68 and mq/AMs = 1.47.
Let us estimate T, for m~ = 0. Making an extrapola-

(XX)
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We should also note that the jump of (0) occurs
exactly at the point where (XX) changes discontinu-
ously: The deconfining and chiral phase transitions al-

ways occur simultaneously for the quark in the funda-
mental representation.

Let us now compare our result at the lightest quark
mass m~ = 0.1 with those in the literature for WF ——4.
Our data of (0) and (XX) agree very well with those
of Polonyi et al. " (even at P=5.1, where a rapid
change of physical quantities was observed in Ref. 11).
They also agree weil with those of Gavai, '2 except for
the transition region, which is shifted upwards by
AP=0.06 in Ref. 12. These authors did not make
claims on the existence or absence of the first-order
phase transition (some indication for weak metastabili-
ty was reported in Ref. 12). A merit of the present
analysis may be the fact that we have carried out a con-
trolled thermal-cycle analysis, which is likely to be
better than simply comparing runs with a cold and a
hot start for detecting the metastable state.

To fix the mass scale in physical units, it is neces-
sary to carry out a hadron-mass calculation in the pres-
ence of dynamical quarks. A rough estimate, howev-
er, can be made by assuming the scaling as follows:
With the aid of
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FIG. 3. Re(O) at every S00 iterations with the time step
5~=0.002 at m, =0.1 and P=5.1. Solid (open) circles
denote data in the cooling (heating) thermal cycle.
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FIG. 4. The value of (XX) along the transition line. Solid
(open) circles show the value of p just above (below) the
jump of (XX) in the heating cycle.
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tion in Fig. 2 gives P, = 4.9-5.0 at m~ = 0, and we find
T, /AMs = 2.7-3.1. This value may be compared with

that obtained for a pure gauge system on an 8 x 4 lat-
tice: T,/AMs = 2.6.' The agreement between these
two values seems to be fortuitous, because a large
modification in a A/ naively expected from the change
b, /3=0. 8 happens to be canceled by a change of the
beta-function coefficients and also by a modification in
A Ms/A/ .

Of course, the values of T,/A quoted above should
be taken as only indicative, because our lattice size is
probably not large enough to extract physics in the
continuum and a sizable violation of scaling may be
expected. In order to address these quantitative ques-
tions, rather than the elucidation of the nature of the
transition aimed at in the present work, simulations on
a larger lattice are clearly needed.
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