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Quantum analogs of Kolmogorov-Arnol’d-Moser tori and chaos in a periodically pulsed single-
spin system are studied in the semiclassical regime. Wave functions (quasienergy states) are
described in a spin-coherent state representation. Their projected binary-phase patterns are charac-
terized in terms of the fractal dimensions of their perimeters.
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Quantum analogs of classical chaos in driven nonau-
tonomous systems have received growing theoretical
and experimental attention. In particular, much effort
has been concentrated on the study of a quantum
kicked rotator! which corresponds to the standard map
in the classical limit. Analyses of wave functions and
associated contours? show that full development of
fine structure (e.g., tendrils) on all scales is suppressed
because of the finiteness of # —distinguishing the situ-
ation from, e.g., diffusion processes in classical fluid
dynamics. This fact, however, suggests at the same
time the possibility of finding tendrils with much finer
structures, i.e., ‘‘fractal’’ tendrils, if # is decreased.

Chaos in driven spin systems has recently become
realized and its study constitutes a very active research
field,> though experiments to date have been limited
to dissipative spin-wave dynamics. Fully nonlinear
dynamics for noninteracting spins, both classical and
quantum, is also an attractive candidate by which to
study classical chaos and its quantum counterpart. The
advantage of spin systems is that, as a result of the

finite-dimensional Hilbert space, we can readily tune |

dS/dt=Sx(—8H/8S) =Sx|—24S,e, + uBe, S 8(t—=2mn)|.

n= —oo
The magnitude S? is conserved in Eq. (2), and is now
normalized to unity. S is then described in polar coor-
dinates, ie., S=(5,,S,,S,) = (sinf cose, sinf sing,
cosf). The discrete map can be constructed for suc-
cessive values {S,}, where S, is the value of S at
t=2mn+0, i.e., just after the nth pulse. In the inter-
val 2rn+0<t<2mw(n+1)—0, the magnetic field is
not operative in Eq. (2) and thus S, is transformed
into T'=R,(a)S, at t=2w(n+1)—0, where the
operator R,(a) denotes a rotation by angle a =4m 4S,,
around the z axis. Then, the (n +1)th pulse during
2n(n+1)—0<t=<2w(n+1)+0 rotates I' by angle
B= —uB around the x axis, yielding S,4;=R,(8)T.

the value of # without artificial truncation procedures
in quantum-mechanical treatments.

In this Letter, we consider wave functions (quasien-
ergy eigenstates!) for a periodically kicked spin system
and demonstrate their ‘‘quasifractal’’ structures in
semiclassically large-spin regions. Let us consider the
single-spin Hamiltonian, common to both classical and
quantum spin variables S,

H=A(S)?—uBS, 3 &(1—2mn),

n=—oo

(1)

where 4 (>0) and B (>0) are an easy-plane
anisotropy and magnetic field along the x axis, respec-
tively. Some aspects of the quantum dynamics for the
same systems, Eq. (1), were recently independently
studied by two groups,* but without any systematic dis-
cussion of wave-function structure.

Before proceeding to the quantum-mechanical treat-
ment, we shall present brief results for classical
dynamics. Then S is a three-component vector
S=S5e,+S,e, + S,e, (e is a unit vector), which obeys
the equation of motion

(2)

! Eventually, the combined map S, +; =R, (B8)R,(a)S,

is obtained, which we have solved with 4 =1.0 and
0.0=<uB=<1.0. The results are given in polar coor-
dinates in Figs. 1(a)-1(c). We see that Kolmogorov-
Arnol’d-Moser (KAM) tori, which dominate in weak
magnetic field regions, begin to collapse with increas-
ing field. Investigation of our extensive data as a func-
tion of w B indicates the presence of two characteristic
fields w By =0.1 and u B, =0.5, where the fraction of
chaotic trajectories increases strongly and the last
KAM torus’ disappears, respectively.

The corresponding quantum dynamics is governed
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by the time-dependent Schrédinger equation for a
wave function y: ik dy/dt=H ¢ with H being the
quantum version of Eq. (1). In contrast with most
previous treatments,'2* we solve this equation after
rewriting it in matrix form at the outset. By using

ponent C,,(¢). C obeys the matrix equation
if dC/dt=HC. (3)
Hisa (25 +1)x (28 +1) real-symmetric matrix:

basis kets {|m)} defined by S,Im)=km|m) H=Hy+ 7V i 8(t—2mn)
(m=-S8—-85+1, ...8), ¢ is written as A= oo
s with
b=3 GCu(0)|m) N
m=-S5 (Ho) = AR*m* '
mm mm
and we have a coefficient vector C with mth com- nd
a
(f’)mm/= ~ (uB/D{[S*=m'(m' + 1)]‘/28m_m,+‘+ ($2—m'(m’'— 1)]”28".,":‘—1}'

where $=[S(S+1)]Y2. Noting the periodicity
H(t+2m)=H(t), we apply Floquet’s theorem: The
solution of Eq. (3) just after the nth pulse is

C(2mn+0)
=3, [exp( —2minE,/i) XL - C(+0)1X,,

where { E,} and {X,} are the quasienergies and eigen-
state vectors, respectively, obtained by solving the
eigenvalue problem UX,=exp(—2miE,/k)X,. x;
is the Hermitian conjugate of X,.) Here U is a one-
cycle unitary matrix defined in terms of the time-

1
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FIG. 1. Classical orbits in ¢4 plane (0<0<,
—7m<¢=<m). 41 orbits with initial values ¢ =0.2 and
0=jm/40 (j=0,1, ..., 40) are shown: (a) B =0.01; (b)
uwB=0.20; (c) uB=1.0.

6

ordering operator T as follows:
- 27 +0 -
U=Texplf,  (—i/)AG)ar]
=exp[(—i/ﬁ)V]exp[(—i/ﬁ)hrHo]. @

To make the numerical diagonalization of U more
tractable, we note the following points. First, because
of the symmetry of Eq. (1) with respect to the reversal
of the quantization axis (S,— —S,), both Egs. (3)
and (4) can be decomposed into decoupled even- and
odd-parity parts. Second, we take F=S5"1!, ie.,
S?=#2§2=1 so that the observable magnitude S2
maintains its classical value. # is thereby irrational for
any integer value of S, ensuring the pseudorandom-
ness of matrix elements in Eq. (4).
We choose to describe quasienergy states

lay = i (Xg) | m)

m= -5

in terms of spin-coherent states (minimum-uncer-
tainty states)®

16, ¢) =exp[—ig(S, sing — S, cosp) 1| —S):

(8, dla) = i (X, ) (0, plm).

m=-—S
The probability density function P,(8,¢)=](8,
#la) | mimics classical orbits nicely. {For the state
|7/2,0) (i.e., minimum uncertainty packet around
6=m/2, $=0), this probability gives

P(0,¢)=1(6,¢|m/2,0) |>=cos*S(\/2)
with cosA =sinf cos¢. For S >> 1,
P(9,¢)=1[(1+cosr)/2]%
=(1-(60—-m/2)Y/4—-¢¥4)*S
=expl— S(8 —7/2)?/2]exp(— S¢?/2),
which indicates a minimum linear scale of O (S~ 1?)
in the (9,¢) plane.} Figures 2(a)-2(d) show moun-

tainous profiles of P,(8,¢) for S=128. Figures 2(a)
and 2(d) correspond typically to a classical KAM torus
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FIG. 2. Three-dimensional pictures of P,(6,¢) for
S =128. (This spin magnitude is retained throughout in
Figs. 2-5.) (a) uB=0.01, E/A=0.1439; (b) uB=0.20,
E/k=0.3849; (c) uB=0.20, E/f=0.1296; (d) uB=1.0,
E/r=0.9006.

for u B =< u B, and global chaos for u B = u B,, respec-
tively. [Compare Figs. 1(a) and 1(c).] Figures 2(b)
and 2(c) correspond to a deformed KAM torus and
bounded chaos, respectively, in the region uB,
< uB < uB, [compare Fig. 1(b)]. These results indi-
cate closer examination of wave-function localization
and structure. The contour map of P,(0,¢) is given
in Fig. 3(a), where several contours are depicted for
the chaotic pattern in Fig. 2(d). We clearly see ten-
drils or whorls with very fine structures, similar to
fractal objects.

In an attempt to quantify P,(8,¢) in terms of frac-
tals,” we define scale-dependent binary patterns by
coarse graining of a projection of the three-di-
mensional structures P,(0,¢): For a linear scale e,
we consider the square exe mesh A4 (e) around the
position (9, ¢) and assign +1 to it if the condition

f(v.db)CA(e)P"(O'¢)d9/f(o,¢)cA(e)dQ = he
is satisfied, and —1 otherwise, where dQ

(a)
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FIG. 3. Contour map for P,(9, ¢) of Fig. 2(d): (a) Five
contour levels with height=0.004/ (/=1,2,...,5) (left-
hand panel); single contour (/=1) level (right-hand panel).
(b) Scale-dependent binary patterns (P,). (from left,
€=¢€9— 2¢o— 2%,). Black meshes are used for + 1 phase.
The height is A =0.004, i.e., v=0.0818. [This 4. value is
used throughout in Figs. 3(b), 4, and 5.]

=sinf df dé. For all meshes in the (0, ¢) plane, this
procedure yields the two-dimensional binary phase pat-
tern (P,), on a resolution €. The left-hand side of the
above unequality is the average of P, over surface ele-
ments of the unit radius sphere and A, [=4mv/
(2§ +1)] is a scale-independent height with a con-

— FJ
> N

logz(L/ 211)
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FIG. 4. € dependence of perimeter length on logarithmic
scales: triangles and circles correspond to Figs. 2(a) and
2(d), respectively.



VOLUME 57, NUMBER 1

PHYSICAL REVIEW LETTERS

7 JULY 1986

o —e
“ . -*.—-. .
o—
v e
.—ﬁ_- -
— 5

==y
R

101

4

0.0+ —
00 05 pB 10

FIG. 5. Field-dependence of D, distributions. The

triangle-in-square symbol indicates the average value (Dy).

Dy values are calculated by least-squares fits to data of Fig.
4.

venient fractional factor v. e is increased as e =2" "¢,
(n=1,2, ...) with € the minimum scale of
O(#Y?)=0(S~?). Both the nodal and vertical
structures of P,(8,¢) are naturally captured by (P,)..
Figure 3 (b) shows the variation of binary-phase pat-
terns with increasing scales €=e,— 2€,— 2%¢, with
€o= /40, appropriate for S=128. The most striking
fractal feature appears in the drastic variation of perim-
eter lengths for phase-pattern boundaries as the grid
scale € is changed.® In Fig. 4, € dependences of perim-
eter lengths L (Legesque measures) are shown for reg-
ular [Fig. 2(a)] and irregular [Fig. 2(d)] wave func-
tions. They fit the scaling law —dInL/dIne= Dy,
where Dy is a fractal dimension. We find Dy=1.0 and
1.58 for wave functions related to KAM torus and
chaos, respectively. We have calculated Dy for all of
the even-parity quasienergy states. In Fig. 5, the dis-
tribution of D, is shown for several values of uB.
(Dy), i.e., average of D, over quasienergies, shows
plateaus for uB<0.1 and uB>0.5, with (Dy)
=1.14 and 1.62 in the former and latter regions,
respectively. For 0.1 <uB < 0.5, (Dy) increases with
wnB. Large fluctuations of Dy in this intermediate re-
gion reflect the coexistence of KAM tori and chaos in
the classical limit. The critical values uB =0.1, and
0.5 compare closely with wB; and wB,, respectively,
observed in the classical treatment. This finding
strongly suggests that, in contrast with quantum kicked
rotators, 2 the persistence of quantum diffusion, rath-
er than its suppression, seems to be characteristic of
the present spin system for large S. When the height
h. is varied by +20%, values D, show little change in
classically regular regimes but definite changes in

chaotic regimes. Nevertheless,
above is found to be unaltered.

In conclusion, the spin-coherent state representation
of wave functions in a pulsed spin system shows quasi-
fractal patterns in semiclassically large-spin regions,
whose scale-dependent contours have perimeters
characterized by a fractal dimension Dy. Variation of
D, with increasing magnetic field clearly coincides with
the transition from predominantly KAM tori to global
chaos in the classical dynamics.
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