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Recent photoemission experiments on sodium tungsten bronzes, Na„Ta~%1 ~03, have revealed
a depletion of the density of states near the chemical potential in insulating samples. %e propose
that this depletion is a Coulomb gap, and that these experiments represent the first direct rneasure-
ment of a Coulomb gap in a disordered insulator. Our conclusion is supported by physical esti-
mates and numerical calculations of the density of states for a classical model of Na„Ta~%'I „03.
The width and shape of the calculated bands agree well with the experiments.
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In a disordered semiconductor, the chemical poten-
tial lies at an energy where the electronic states are
localized by the disorder. Because these states cannot
carry a current, they are unable to screen the
electron-electron interaction which retains its long-
range 1/r form. Coulomb interactions consequently
have a large effect on the electronic structure of disor-
dered insulators. ' One of the most significant results
of the interactions is the Coulomb gap2' in the density
of single-particle states n i (E), which is that for adding
an extra electron or hole to the ground state and allow-
ing no relaxation of the localized electrons. The
Coulomb gap is a depletion in n i(E) near the chemical
potential p, , it is a "soft" gap, meaning that ni(E)
vanishes only at E=lt, . According to a mean-field
theory, 3 4

ni(E) =a(E —p, ), u= (3/n)(e /41760K), (1)

near E=lt, in three-dimensional systems. The only
parameter in a is K, the static dielectric constant of the
material; apart from this, the value of ot is universal.

While much numerical work has confirmed this re-
markable result, ' 8 the experimental status of the
Coulomb gap is less clear. The main problem is that
the gap is strictly in

n i (E), which is not the density of
states probed by measurements of optical absorption
or specific heat, for example. The Coulomb gap is ex-
pected to modify the activated electrical conductivity at
low temperatures, but the effects of interaction on
transport are not well understood. Tunneling experi-
ments measure n i (E) directly, but cannot be inter-
preted quantitatively when the sample is not a good
conductor. Photoemission is better, because an elec-
tron is ejected rapidly from an occupied level and
processes involving relaxation of the localized elec-
trons should make a negligible contribution to the ob-
served density of states. Unfortunately, this method
has inadequate energy resoltuion to detect a Coulomb
gap in conventional doped semiconductors.

Photoemission experiments have recently been per-
formed on a different class of materials, ' " sodium

tungsten bronzes. The most striking features of the
results are apparent in insulating samples: (i) There is
a depletion of the density of states near the chemical
potential. (ii) The occupied part of the conduction
band has a width almost independent of the degree of
filling, and has a symmetric density of states. We ar-
gue in this paper that the long-range Coulomb interac-
tion is responsible for both these features, and that (i)
represents the first direct experimental measurement
of a Coulomb gap. To gain further evidence, we have
developed a classical model of insulating tungsten
bronzes. The density of states, calculated numerically,
exhibits both features (i) and (ii). In addition we
demonstrate that (ii), which is in complete contradic-
tion to the rigid-band model, is a natural outcome of
the Coulomb interactions in disordered insulators in
which the localized electrons are distributed on a lat-
tice.

Sodium tungsten bronzes, which may be compensat-
ed with tantalum, have formula Na TOW& «Oi and
show a metal-insulator transition'~' as the doping is
varied. Sodium is an interstitial donor, giving up its
outer electron to the conduction band of the host.
This is composed predominantly of W Sd orbitals, with
some admixture of 0 2p orbitals. Band-structure cal-
culations' show that the Na 3s wave functions lie so
high in energy that they make a negligible contribution
to the conduction band, and NMR experiments' sup-
port this picture. Tantalum is believed to act as an ac-
ceptor, taking an electron from the conduction band.
Thus the density of electrons remaining in the conduc-
tion band is x —y per unit cell. A metal-insulator tran-
sition occurs' '3 as this is lowered through x —y= 0.18. Although these compounds are very different
from conventional doped semiconductors, they may
also be expected to have a Coulomb gap in their densi-
ty of single-particle states. The requirements for a
Coulomb gap are a long-range 1/r interaction, and that
the participating electronic states are so well localized
that they have negligible overlap in space. %e expect
these conditions to be met in sufficiently lightly doped
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tungsten bronzes. The density of impurities is much
higher than in doped semiconductors, and the dielec-
tric constant is lower, which means that typical
Coulomb energies in the impurity band are larger.
The Coulomb gap should have a width of roughly 1

eV, large enough to be investigated by photoemission.
Photoemission experiments have recently been car-

ried out' on a family of samples of Na„Ta«W& «03
with a resolution of about 0.25 eV. We assume (fol-
lowing Ref. 10) that there are no problems with as-
signing the chemical potential, nor with a straightfor-
ward interpretation of the intensity of photoemission
as proportional to the density of states of the bulk.
The experiments on insulating samples reveal an im-
purity band whose density of states is depleted near
the chemical potential. It was suggested' that this de-
pletion might be a Hubbard gap, but we believe in-
stead that it is a Coulomb gap. The experimental evi-
dence against a Hubbard gap is that photoemission
shows a gap at the chemical potential both in compen-
sated' and in uncompensated' " (y =0) samples. A
Hubbard gap coincides with the chemical potential
only if there is exactly one electron per site. This is
never the case in compensated materials, and the na-
ture of the impurity band in tungsten bronzes means
that it is not the case here even ~hen they are riot corn-

pensated; we explain this in more detail later. In con-
trast' to a Hubbard gap, a Coulomb gap is tied to the
chemical potential, as seen in the experiments. Its
form is known from Eq. (1), which fits the experimen-
tal measurements well. To make this identification
more precise, we have calculated n~(E) for a simpli-
fied model of Na„Ta«W& «03.

The original numerical calculations' s of n&(E) that
were made to investigate the Coulomb gap used a clas-
sical model of an impurity band. To derive densities
of states in the same way for comparison with the ex-
periments, ' "we introduce a highly simplified, classi-
cal model of Na, Ta«Wt «03. The Na and Ta impuri-
ties generate a random electrostatic field which distorts
the bottom of the WO3 conduction band and localizes
the electronic states there. This can be exploited,
when the system is well within the insulating phase, to
model the lowest part of the conduction band as a clas-
sical impurity band with the following features:

(i) The basic structure is a simple cubic array of W
atoms; the O*s are ignored.

(ii) A fraction y of these atoms are replaced at ran-
dom by Ta. These become negatively charged (with
electrons donated by Na) and behave only as fixed
negative point charges.

(iii) A fraction x of interstitial sites are occupied
randomly by Na+ ions, which again behave simply as
fixed point charges.

(iv) The remaining x —y electrons per unit cell are
distributed over the % atoms. Their eigenstates are

localized on single sites, with negligible tunneling
between neighbors. No more than one electron may
occupy a W site, and occupation of the Ta sites is for-
bidden.

It is essential for this model that the wave functions
of the donor Na atoms make no contribution to the
impurity band, as was pointed out above. This is in
sharp contrast to a conventional doped semiconductor
like Si:P where the wave functions of the impurity
band, as well as the electrons, are contributed by the
donors. The total number of states per spin in the im-
purity band is therefore 1 —y per unit cell, the number
of remaining W atoms, rather than x, the number of
donors. This in turn means that for the band to be
half filled, which is the condition for a Hubbard gap to
lie at the chemical potential, the number of electrons
(x —y) must be equal to the number of W atoms
(1 —y ), i.e., x = 1. This is far from the region in
which we are interested, so that a Hubbard gap can
play no role in the insulating phase of Na„Ta«Wt «03
even in uncompensated material (y = 0).

The fourth of the classical model's features is the
least well founded. In crystalline WO3 the wave func-
tions in the conduction band form a "tubular" struc-
ture along the %-0-% directions. We expect that the
random field from the Na+ and Ta ions is powerful
enough to disrupt this structure and to localize elec-
trons on individual sites. This random field has a mag-
nitude of several electronvolts (see the results later)
which is comparable with the width of the conduction
band'~ (about 2.5 eV). A classical model fails for sys-
tems too close to the metal-insulator transition, where
the weakly localized wave functions acquire a large ra-
dius. Our particular model also fails for very lightly
doped tungsten bronzes, where a different basis of lo-
calized states becomes appropriate. We are unable to
offer precise limits on the validity of the model be-
cause this would involve a detailed treatment of the
complex conduction band of WO3. The rest of the
band structure of this "host, " comprising states for
more than one electron per site, has been ignored. It
plays no important role provided that it does not over-
lap the occupied part of the impurity band, which is all
that is needed for comparison with the experiments.
On the other hand, we do not expect the part of the
conduction band that we are describing with the classi-
cal model to be separate from the rest of the band.

After these simplifications, only the Coulomb in-
teractions remain in the problem, and these determine
all the energies in the impurity band. The ground state
of the classical model is defined as the arrangement of
the x —y electrons over the 1 —y % atoms that minim-
izes the total energy. We used a computer program
described previously to calculate n

&
(E). In terms of

the lattice spacing ao and the Coulomb energy between
adjacent sites Eo= e /4n eo~ao, the Coulomb potential
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energy becomes E&&agr. In our case, ao=0.38 nm
and Eo=0.76 eV with use of an estimate" K=5. A
brief description of the program is as follows. The Ta
and Na atoms are distributed at random in the way
described above. The electrons are thrown in random-
ly on the W atoms and then moved one at a time to
lower the total energy until no favorable transition
remains. The resulting "pseudoground state" is stable
against moving any one electron, but is not expected
to be a true ground state. Previous work showed
that there was little difference between n&(E) for
pseudoground states and true ground states, and we
assume that this result holds here. We used lattices of
10&&10&&10 sites, which were found 8 to be large
enough to avoid finite-size effects. Fluctuations from
sample to sample were rather stronger in our present
calculations, which we attribute to the different source
of the random field, but the effect is barely visible in
our densities of states.

Figure 1 shows the densities of single-particle states
derived from the pseudoground states. All the curves
have a prominent Coulomb gap at the chemical poten-
tial, to which the parabola (1) is a good fit. The occu-
pied parts of the bands (E & p, ) are all of nearly ident-
ical width and are symmetric in shape, as seen in the
experiments. Note that the experimental densities of
states'o are broadened by the resolution of about 0.25
eV. For x =0.25, y =0.20 [Fig. 1(a)] the computed
band of occupied states is about 1.3Eo wide (=1.0
eV). This is in excellent agreement with the experi-
ments (Ref. 10, Fig. 6), which give a width of about
1.1 eV.

Experimental measurements on two samples, both
with the same value of x —y =0.15 but differing in x
and y separately, yielded densities of states that were
indistinguishable (Ref. 10, Fig. 6). We find the same
[Figs. 1(b) and l(c)l. This value of x —y is, however,
rather too close to that at the metal-insulator transition
for our classical model to be very reliable.

For x = 0.1, y =0 [Fig. 1(d)) the calculated band is
narrower, only about 1.1Eo ( =0.8 eV), which again

agrees closely with the experimental curves for these
values (Ref. 10, Fig. 5; Ref. 11, Fig. 6). This system
is uncompensated, which implies a much lower density
of ions; this in turn leads to a weaker random field and
explains the narrower peaks in n, (E). The compar-
ison with experiment is unfortunately not as straight-
forward in this case because the cubic crystal structure,
which we have used for our calculations, is not stable
at these values of x and y, but we do not expect this to
have a significant effect on the shape or energy scale
of the impurity band.

A striking feature of the occupied bands measured
in insulating samples, ' " and scen in the simulations,
is that their width is almost independent of their de-
gree of occupation (x —y), in strong disagreement
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FIG. l. Density of single-particle states n~(E) for the
classical model of NazTa~%~ y03 for various values of x and
y. The results are for systems of 10 & 10 & 10 sites, averaged
over 50 samples. For clarity, the points of the histograms
have been joined by straight lines. The parabola predicted
by Efros (Ref. 4) is also shown in (a). The sites in (e) were
correlated so that every Ta ion had a Na+ ion in an adja-
cent interstitial site. Energies are measured in units of Ep.

with the rigid-band model (which works well for me-
tallic samples). This strange behavior can be explained
very simply by the classical model and the theory3 of
the Coulomb gap. Consider a filled site i and an empty
site j in the ground state, with single-particle energies
E; and E&. The energy required to move the electron
from i to j is E, —E; —Eoagrj, which includes the
change in Coulomb energies caused by the moving of
the electron. Because the system was originally in the
ground state, the difference in energy must not be
negative. If i and j are neighbors, in which case the
Coulomb energy takes its maximum value of Eo, this
inequality becomes E; ~ EJ —Eo. Since the lowest
value of E, is p, , there must be values of E; at least as
low as p, —Eo. This implies a minimum bandwidth of
Eo for the occupied states, regardless of the fraction of
the band that is occupied. It also follows from this ar-
gument that the bottom of the occupied band, as well
as the top, is influenced by the Coulomb gap, so that
the band tends to be symmetric as observed. These
features should help to identify bands that are dom-
inated by Coulomb interactions in disordered semicon-
ductors with a lattice. They do not apply to conven-
tional doped semiconductors like Si:P, where the sites
of the impurity band are distributed very nearly at ran-
dom through space.
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It is possible that correlation between the positions
of the Na+ and Ta ions might arise during the
preparation' of the samples, because of the Coulomb
forces between the ions. This ~ould tend to narro~
the density of states by reducing the magnitude of the
random electrostatic field, and might also be important
in explaining the puzzling observation' " that the
metal-insulator transition depends only on x —y, the
density of electrons in the conduction band, and not
on x and y separately. We investigated the effect of
such correlation on n&(E) for x =0.25, y =0.20 by
performing a further simulation in which every Ta
has a Na+ in one of the interstitial sites immediately
next to it. The result of this pairing is shown in Fig.
1(e): the occupied band is narrowed by about 20%. It
would be difficult to detect the existence of correlation
between the impurities without better experimental
resolution.

It has been pointed out'8 that the electron-phonon
interaction might also give rise to an apparent gap in
the density of states measured by photoemission,
through the creation of polarons. Such a gap would
also occur at the chemical potential. If this were the
case, the electrical conductivity ought to show an ac-
tivation energy related to the apparent gap. The
present measurements' are inadequate to rule this out
conclusively. However, it is difficult to see how the
symmetric shape and constant width of the band could
arise solely from polaronic effects.

In conclusion, we have identified the gap in the den-
sity of states of Na„Ta«W& «03 measured by means of
photoemission'o " as a Coulomb gap. This identifica-
tion is strengthened by calculations of the density of
states using a simplified, classical model. We hope to
see further experiments on these materials, in particu-
lar inverse photoemission to probe the unoccupied
side of the Coulomb gap. It is also important to eluci-
date the effect of the Coulomb gap on other properties
such as transport, and to study more closely the effect
of compensation. There are other compounds where
photoemission might reveal the presence of a
Coulomb gap, of which doped Fe304 and Ti407 are ex-
amples, and experiments on these would also be valu-
able.
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