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cm ' Ai line and the 172-cm ' line.
The spectra (b) and (c) were measured at 12 mW

just after the start of the irradiation (b) and after irra-
diation of 12 mW for 330 min (c). The intensity of
the 198-cm ' Ai peak increases instead of the 210-
cm '

A~ peak. The linewidths of many peaks in spec-
trum (c) are almost the same as those in (f). But the
set of peak energies, 28, 32, 42, 59, 67, 76, 88, 121,
135, 158, 198, 207, 256, and 321 cm ', is very dif-
ferent from that in spectrum (f), 29, 43, 51, 61, 71,
79, 84, 96, 116, 150, 199, 209, 248, 257, 305, and 327
cm ' in which all but 51, 199, and 327 cm ' are coin-
cident with the peak energies in the crystal (g). The
microcrystalline phase obtained by the low irradia-
tion intensity is strongly supposed to be the lovv-

temperature GeS2 phase. It is known that in the case
of GeS2 glass the energy of the A i peak which corre-
sponds to the 198-cm ' peak in GeSe2 is coincident
with the energy of the strongest A' peak in the crystal
of the low-temperature phase. '2 The modes at 59, 89,
198, and 257 cm ' in spectrum (b), which are as-
signed to the E, F2, 2 i, and F2 modes in a methane-
like GeSe4/2 molecule, remain in (e). It is reasonable
in the low-temperature phase, because only a single
type of methanelike molecules is the constitutional
element. The spectra (c) and (f) were almost un-
changed after the sample was left in the dark at room
temperature for one day.

There is a sharp threshold intensity between 0.6 and
0.8 kW/cm2. Haro et al.9 have reported the existence
of the threshold in the crystallization. Their measure-
ment was limited to the spectral range from 150 to 250
cm ' and then they did not measure the sharp lines
below 150 cm '. They assigned the increase of the
200-cm ' A i peak as a precursor effect of the crystalli-
zation to the normal crystal structure of GeSe2. How-
ever, the present experiment clearly shows that this is
another microcrystal structure. This will be discussed
later in detail.

The threshold input intensity 0.7 kW/em2 corre-
sponds to 2X102' photons/sec cm2. If we suppose
that the penetration depth of the light is 300 p, m, 3 the
density of the incident photons is 1023/cm3. The den-
sity of GeSe2 molecules is 1022/cm3. Therefore all
GeSe2 molecules are in the excited state, if the decay
time of the excited state is longer than 100 msec.

At the beginning of the irradiation the spectra show
complicated behavior with the change of the laser in-
tensity. Figure 2 shows the time dependence of the in-
tensity of Raman peaks at 199, 207, and 217 cm
with the irradiation of alternating laser power. The ini-
tial decrease of the intensity by the weak laser beam is
due to photodarkening. The appearance of a flat or a
decreasing region of the scattering intensity at the be-
ginning of the irradiation of 26 mW indicates that ac-
cumulation of the excited molecules is necessary for

(c)

I i l I I i I i I i I i I i I I I I i I I I i I I

5 lp 15 2p 25
T)ME (min)

FIG. 2. Records of the scattering intensities from a-GeSe2
at the energy shift of (a) 199 cm ', (h) 207 cm ', and (c)
217 cm ' with alternating laser intensity of 5.2 mW (0.3
kW/cm2, dashed curves) and 26 mW (1.4 kW/cm', solid
curves).

the photoinduced crystallization.
Similar photoinduced crystallization is also observed

in S1$e2 glass. The Raman spectra are shown in Fig. 3.
At the irradiation of a 4579-A laser beam with above-
threshold intensity, crystallization is observed as
shown in spectrum (c). Below the threshold the in-
crease of the 218-cm ' peak relative to the 242-cm
peak is observed in the spectra (b). Many sharp lines
as observed in GeSe2 were not observed yet with this
input power and irradiation time up to 5 h, but the rel-
ative increase of the 218-cm ' peak is supposed to be
a precursor effect of the crystallization to the low-
temperature GeS2 phase.

This kind of bidirectional photoinduced crystalliza-
tion is interpreted with difficulty by the medium-range
order such as the outrigger raft model in GeSe2, the
extended-chain model, " or the cross-linked chain-
cluster model in SiSe2. In the framework of the
outrigger-raft model the photoinduced crystallization is
caused by the increase of the domain size through
movement or extinction of the domain boundary.
Generally speaking the motion of the domain boun-
dary is driven by very small force. Therefore the ex-
istence of the threshold intensity as observed in the
present experiment is hardly explained. A model for
the glass structure is proposed in the following by
comparing with other chalcogenide glasses.

The Raman spectra in GeS2, GeSe2, SiS2, and SiSe2
glasses are shown in Fig. 4. For the benefit of compar-
ison the energy scales for the sulfides are contracted
by the factor (Ms/Ms, )'/2, where M~ is the atomic
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FIG. 3. The photoinduced crysr stallization of a-SiSe2.
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(c)

structs microcrystals with the same structure as the
low-temperature phase of GeS2. At the intense irradi-
ation all the peaks which are observed in the crystal
appear simultaneously. This implies that the long-
range order composed of two types of molecules is
essential for the Raman spectra in the high-temper-
ature GeS2 phase. The threshold intensity possibly
corresponds to the photon density which excites all
molecules in the irradiated volume.

This work was supported by Nippon Sheet Glass
Foundation for Materials Science.

FIG. 5. The normal vibrational modes for the molecules
which are constitutional elements of chalcogenide glasses.

tetrahedral units are both infrared and Raman active.
In glassy SiSe2 the peak at 360 cm ' is assigned to the
summation of one of the F2 modes and the mode of Si
displacement perpendicular to the chain axis in the
double-bonded units. The absorption due to the F2
mode is observed as a shoulder in the absorption spec-
tra. ts In the crystal the modes (a) and (b) are no
longer independent. The strongest Aa mode in the
crystal GeSe2 is the coherent vibration of the local
modes (a) and (b). The specific behavior of the com-
positional dependence in the intensity of the com-
panion A t peak relative to the A t peak in Ge Set
naturally explained in the present model. It will be
presented separately.

The two-directional photoinduced crystallization is
interpreted as follows. The irradiation of intense light
above the threshold causes the crystallization with the
same structure as the crystal, but weak light below the
threshold increases methanelike molecules and con-
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