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Anomalous Corrugations in Scanning Tunneling Microscopy: Imaging of Individual States
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Unusual corrugations observed in scanning-tunneling-microscope (STM) images of 17-TaS;,
Si(111)(2x 1), and graphite are explained, and are shown to be characteristic of materials where the
Fermi surface has collapsed to a point at the corner of the surface Brillouin zone. This is the first
clear case where the low-bias STM image is dominated by electronic structure effects rather than
surface geometry. Implications for STM spatial resolution are discussed.

PACS numbers: 61.16.Di

Scanning tunneling microscopy (STM) has proven
uniquely useful because it gives direct real-space im-
ages of surfaces.! While electronic effects are some-
times detected, STM images are generally dominated
by surface structural features. However, recently
several cases have been found where experimental
STM images exhibit unexpected large corrugations,
which are not characteristic of the surface atomic
geometry, and cannot be understood in purely struc-
tural terms.2=¢

This paper shows that these cases, 17-TaS,,
Si(111)(2x1), and graphite, can be understood in
terms of a single simple mechanism peculiar to
semiconductors and semimetals of low effective
dimensionality: Whenever the Fermi surface collapses
to a point at the corner of the surface Brillouin zone
(SBZ), the STM image corresponds in effect to an indi-
vidual state. The nodal structure of this state gives rise
to a large corrugation with the periodicity of the unit
cell, regardless of the underlying atomic structure.

The theory’ of STM has already been applied very
successfully in the usual case where atomic structure
dominates the image.”® Attention has therefore
turned to the effects of electronic structure in STM.
Such effects may be enhanced to a dramatic extent by
studying the dependence of the image on bias vol-
tage,>® or by plotting differential tunneling conduc-
tance at a given bias voltage,”'® and a theoretical in-
vestigation of such ‘‘scanning tunneling spectroscopy’’
has been reported by Selloni ef al.'!

The first observation of dramatic electronic struc-
ture effects in ordinary STM, i.e., without voltage
modulation or bias, was reported by Coleman et al.,?
who imaged charge-density waves (CDW’s) on 17-
TaS,. Surprisingly, very large corrugations (estimated
4 A) with the CDW periodicity were observed,
although the CDW atomic distortions are minute. No
hint of the underlying atomic structure was observed.
Subsequently several groups®=> reported images of gra-
phite with exceedingly large corrugations of roughly
1 & (or even more, as discussed below), consistent!2
with the corrugation 0.7-1.0 A calculated by Selloni et
all' The explanation offered here for these images,

which differ drastically from the surface topography,
appears to be directly confirmed by subsequent obser-
vations of Stroscio, Feenstra, and Fein® for tunneling
to quasi one-dimensional chains on Si(111) (2x1).

The general theory of STM at small bias voltage has
been discussed by Tersoff and Hamann.” Within a
simple s-wave model for the tip (whose actual struc-
ture is not known, and may vary from measurement to
measurement), they found that the tunneling conduc-
tance o is just

oxp(r,Eg),
(1
p(r,E)=3 v, (D)I8(E,~E),

where p(r,,Eg) is the local density of states of the bare
surface at the center of curvature r, of the tip and at
the Fermi energy Eg, and ¢, are eigenstates of the
semi-infinite sample with energy £,. The STM image
(in the usual constant-current mode!) then represents
simply a contour of constant p(r,Eg).

In the usual case where the Fermi surface is extend-
ed, the image (1) is often quite similar to the total
charge density.” The crucial point of this paper is that
there are, however, cases where only one surface wave
vector k) (or at most a set of symmetry-related k;, and
their neighborhoods) contributes to the sum in (1).
One is then in effect imaging a single wave function,
rather than mapping surface topography. If k; lies at
the SBZ edge, that wave function will generally have
nodes, which lead to very large corrugations with the
periodicity of the unit cell, independent of the atomic po-
sitions within the unit cell.

The physics underlying the anomalous corrugations
is conveniently illustrated by considering the quasi
one-dimensional free-electron system, which has
plane-wave eigenstates of the form i, =exp(ikx).
Here x is the allowed direction of propagation, z is the
surface normal, and structure in the y direction is
neglected. Outside the sample, the decaying tails of
the states have the generalized plane-wave form’

U =explikx)exp(—a,z), 2)
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where z is the surface-normal direction, ay= (a}
+ k)2 ag=E"1(2m¢)"?, and ¢ is the (effective lo-
cal) work function.

If the crystal potential has a Fourier component 2kp,
it opens up a gap at Eg, mixing states of wave vector
kg and — kg to form standing waves with nodes. The
potential may have this periodicity either because 2kg
is the reciprocal-lattice vector G of the lattice, as for
common semiconductors, or because of a 2k CDW
distortion. (In discussing semiconductors, tunneling
to band-edge states is assumed here, except as dis-
cussed below.)

With the assumption of inversion symmetry, the
eigenstates of the crystal at Eg are then ¢, =y _,, and
one can without loss of generality consider only one
sign. Then, by use of (2), outside the crystal the wave
function becomes

¥, =sin(kgx)exp( —agz), (3)
and from (1) the associated tunneling conductance is
o = Agsin?(kgx,Jexp(—2apz,). @)

Here x, and z specify the tip position, af is a; at kg,
and the proportionality constant A, depends upon the
experimental and material parameters.

The experimental image is the path of constant con-
ductance,! defined implicitly by (4). Solving for z
gives an image which can be cast in the dimensionless
form

{=Uo+Insin’y, (5)

where {=2agrz, n=kgx,, and {;= —In(o/A4y). This
function is shown in Fig. 1 and gives the STM image,
within the approximation (1), for any realization of
the two-plane-wave model. Only the scale of the axes
and the z position of the surface plane depend on the
specific case.

This idealized image consists of an array of singular
dips, and is only physically meaningful outside the sur-
face, where (3) is valid. In reality these dips will be
smoothed out by a variety of effects. Most important,
the result (1) depended upon the specific assumption
of an s-wave tip wave function. That result was shown
not to be very sensitive to the inclusion of the other
low-/ components.” However, the vanishing conduc-
tance for x,=0 is exact only when the tip wave func-
tion has no components of azimuthal symmetry n2,5=0.
Thus one might expect a small parallel conductance
channel associated with these tiny neglected terms,
which could reduce the pathology at x,=0 to merely a
huge dip.

Other possible deviations from the idealized situa-
tion assumed here include nonideal instrumental
response, and tunneling to states with k) slightly off
the symmetry point (due to finite Fermi-surface ex-
tent or to finite voltage). In particular, if the k; range
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FIG. 1. Calculated STM image (5) for the two-plane-
wave model of a one-dimensional semiconductor or CDW
insulator.

sampled at voltage V, i.e., k(Eg+eV) — kg, is a sub-
stantial fraction of the SBZ dimension, then the
anomalous corrugation enhancement could be reduced
or eliminated. Such an effect has apparently been ob-
served in all the relevant systems studied experimen-
tally,>46 13 and is seen in the numerical calculation of
Selloni et al.l!

The two-plane-wave approximation may seem
simplistic. However, a crucial point here is that this
model (or its 2D analog) is in fact quite adequate to
describe the electronic structure at the distances of in-
terest here. The real wave function, even if atomic-
like, can be expanded in surface reciprocal-lattice vec-
tors G as’

¥, = Y sacgexpli(k +G)xlexp(—agz), (6)

where ag=I[af+ (k+ G)?]1/2. (Any CDW’s are as-
sumed commensurate.) The higher Fourier com-
ponents have larger ag, and so decay faster with dis-
tance from the surface. At large enough distances, it
is adequate, as in the two-plane-wave model, to retain
only the two most slowly decaying terms. This is illus-
trated below for graphite. Thus the image in this case
contains no information whatever on the positions of
individual atoms.

The occurrence of this effect has subsequently been
directly confirmed by Stroscio, Feenstra, and Fein,®
who observed an unexpected corrugation, with the
periodicity of the lattice, along the quasi one-
dimensional chains of Si(111)(2x1) when tunneling
to surface states at the SBZ edge. These images had at
first proven puzzling, because of their dissimilarity to
the atomic structure. However, the phase change of
the corrugation between valence-band and conduc-
tion-band images provided an unambiguous identifica-
tion of the effect.

Real CDW materials are often quasi 2D, with a hex-
agonal structure consisting of three CDW’s at 120° an-
gles. Generalizing to quasi 2D materials is straightfor-
ward. If the band edge falls at P, the relevant wave
function can be expanded in six plane waves, and just
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as in (5) the image can be case in a dimensionless
form:

3
S sin’a, m
n=1

where the CDW directions @, are (0,1), (+/3, — 3),
and (— +v3, — $). This model image exhibits a hex-
agonal array of singular dips. Along the shortest path
between nodes, i.e., normal to @;, (7) is identical to
the one-dimensional example above.

It seems probable that (7) is adequate to describe
the image of a real CDW semiconductor such as 17-
TaS,, once allowance is made for smoothing as dis-
cussed above. This interpretation provides a natural
explanation for the absence of observable CDW corru-
gation for the metallic 2H phase. However, the exper-
imental images? do not show sufficient detail to pro-
vide a severe test, and ab initio calculations for such
materials are not at present feasible. Fortunately the
same physical effect is expected, and has apparently
been observed,>=’ in a much simpler system, ordinary
graphite.

Because of the weak interaction between layers in
graphite, most electronic properties are already well
described by a single monolayer,'* and so I consider
that simplest system first. The graphite monolayer!* is
a zero-gap semiconductor, with a single state at the
corner P of the SBZ determining Eg. This is exactly
the situation described above for a hexagonal CDW,
so that the (idealized) STM image of graphite should
be well described by (7). At the same time, p(r,Eg)
may be calculated directly, and the result of such a cal-
culation is shown in Fig. 2, along with a schematic pic-
ture of the graphite structure and SBZ. The pi-state
lobes directly over the atoms are clearly visible in Fig.
2, as is the node over the sixfold hollow site. The total
charge density of the monolayer is also shown for
comparison. The model image (7) is also shown in
Fig. 2, and is virtually indistinguishable from the full
calculation for graphite, except very near the surface
where higher Fourier components of (6) cannot be
neglected.

In real graphite, interlayer interactions yield a very
narrow but finite Fermi surface, which lifts the strict
node in p(r,Eg). These interactions also break the
sixfold symmetry, making the two atoms ine-
quivalent.>!! It would be of some interest to see
whether greatly expanding the Fermi surface by inter-
calation of alkali-metal atoms would drastically reduce
the STM corrugation.

Note that the corrugation of the total charge density
decays exponentially with distance from the sur-
face.”!> While normally this is true of the corrugation
of p(r,Eg) as well,’ for this special case (7) shows ex-
plicitly that successive contours (within the six-plane-
wave approximation) differ only by a constant shift in

{=In + o, @)
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FIG. 2. (a) Surface Brillouin zone (SBZ) of hexagonal lat-
tice (right), and structure of graphite monolayer. Circles:
atoms; dotted lines: bonds; solid lines: planes of figures
below. Horizontal and vertical axes are x and y. (b) Total
charge density of graphite monolayer. Successive contours
differ by a factor of ten. Ticks at left show intervals of 1 a.u.
from surface (zdirection). Atomic plane is at bottom. Hor-
izontal axis corresponds to solid line in (a). (c) p(r,Ef) for
graphite monolayer, as in (b). From (1), successive con-
tours give possible STM images. (Details of singularity are
truncated, a plotter artifact.) (d) Universal six-plane-wave
model (7) of STM image for kg at Pin SBZ. Scale is chosen
to correspond to graphite, and image is repeated with several
displacements {, for ease of comparison.

the z direction.

The distance independence of the corrugation, as
embodied in (7), has important implications for STM
resolution. In particular, claims>* of extremely high
resolution in STM based on the ability to image the
unit cell in graphite, while correct, may possibly be
misleading. While the resolution cannot be uniquely
defined for a nonlinear measurement such as STM, in
the large-distance (small corrugation) limit the prob-
lem can be linearized. Following Ref. 7, one can show
that the effective resolution is then given by an rms
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width Wof
W(z)=1Inlpg(z)p5'(0)p5 ' (z)pe(0)1/2G?,

where G is the smallest surface reciprocal-lattice vec-
tor, and py and pg are the zero and G Fourier com-
ponents of p(r,Eg). When the assumption of sam-
pling ‘‘typical”” wave functions applies, W becomes
rather insensitive to the sample details, and one can
define an inherent resolution of the instrument’
W(z) = (z/2a)?, which broadens with increasing
distance z. However, in the present case, it is simple
to show that pg(z)pg1(0)=pe(z)ps'(0), so that
W (z) — 0 independent of z, and the resolution so de-
fined is infinite. Of course, for this case the asymptotic
limit never applies, but the point remains that one ex-
pects remarkable resolution in the case of graphite
which will not be reproducible on other surfaces, and
so is not the characteristic resolution of the instru-
ment.

For graphite, corrugation amplitudes of 3 A or more
have been observed, comparable to those for 17-TaS,.
From (5) and (7), the corrugation amplitude scales
with ag, which is related to the work function as dis-
cussed under (2). Experimentally, measured values of
—d(Ing)/dz, which should equal 2ag, are instead
usually much smaller, corresponding to an unphysical-
ly small “‘effective work function.”” Comparison of
theory and experiment!® suggests that, with suitable
smoothing, (5) quantitatively describes experimental
results for graphite, if the measured value of
—d(Ino)/dz, is used for 2ap. Unfortunately this
quantity is not routinely measured during STM imag-
ing. The small ‘“‘effective work functions,”” which
should contribute to the large observed corrugations
simply by distorting the z scale, are not well under-
stood at this time, but explanations based on elastic
deformations have been proposed by Coombs and
Pethica!” and by Soler ez al.'®

In conclusion, for one- or two-dimensional semicon-
ductors or semimetals, where the Fermi surface has
collapsed to a point at the corner of the SBZ, the STM
image is described in the ideal case by an extremely
simple universal form. The crucial feature of this im-
age is that it exhibits a large corrugation with the
periodicity of the lattice, because of the nodal struc-
ture of the zone-edge wave function; the image has no
direct relation to the positions of atoms within the unit
cell. Moreover, while one can often neglect the sam-
ple dependence of the STM resolution,’ in the cases
treated here the nominal resolution diverges because
of the sample electronic structure, permitting easy
resolution of 2-A features on graphite.
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