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Monte Carlo Calculation of the Spin-Dependent Potentials for Heavy-Quark Spectroscopy
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We calculate by lattice numerical methods the spin-dependent potentials relevant for heavy-
quark spectroscopy. We find a long-ranged nonperturbative component in one of the spin-orbit po-
tentials, whereas all other potentials exhibit a short-ranged perturbative behavior.

PACS numbers: 12.38.Gc, 12.40.Qq

The complex dynamics which governs the binding of quarks and antiquarks into hadrons simplifies under the as-
sumption that the quarks are very massive. It then becomes possible to perform an expansion in inverse powers of
the quark mass and, to the leading orders, the dynamics is determined by the two-body Hamiltonian!-2
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The static potential ¥ in Eq. (1) is related to the expectation value of Wilson-loop factors, whereas the spin-

dependent potentials V;, i =1-4, are given by
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The symbol (B,E; (or B;)) y in (2)-(5) stands for the
expectation value of the path-ordered product of color
fields and transport factors along the sides of rectangu-
lar loops of extent r in space and T in time. (1) is
the Wilson-loop factor itself. The quantum averages
in (2)-(5) can be calculated numerically within the lat-
tice formulation of QCD. Thus the static potential has
been evaluated with a high degree of accuracy*~’ and
successfully used for a calculation of the spin-in-
dependent properties of the J/¢ and Y families.® Here
we report about the numerical determination of the
spin-dependent potentials. Calculations along similar
lines, albeit with less statistics or for different gauge
groups, have been recently presented.?!!

We considered a 163x32 hypercubical lattice with
periodic boundary conditions. We calculated the quan-

tum averages by the Monte Carlo method, using
Wilson’s form of the lattice action, with coupling
parameter B3=6/g>=6.2, and the quenched approxi-
mation, whereby vacuum polarization effects due to
light quarks are neglected. We denote by a the lattice
spacing, and by U} the gauge dynamical variables de-
fined over the links from x to x +aa. It will be con-
venient to denote by U:‘s‘; the product of the link vari-

ables U along a counterclockwise path originating at x
and threading the sides of a plaquette in the (s,s")
quadrant of the w-v plane. Thus, e.g.,

Upr = Ub_, Us, UK Uy. (6)

x—pa“x—pa+va

In terms of these variables we define lattice field
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strengths:
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=5 3 F&, (8)
v =5 3 . (9)

We made the identifications ga?B;(x) — F, ijk in
cyclical order,

ga’E;(x) — F},

for the correlations between fields B and E and for the
correlation between the components of B in the direc-
tion of separation t (i.e., the fields defined over spatial
plaquettes orthogonal to T); but we used

% 25 <F’gSF;..'j',s>

to reproduce the correlation between components B*
orthogonal to the direction of separation (assumed to
be along the i axis). These definitions were found in
Ref. 9 to produce results in good agreement with per-
turbation theory also at small distances with the Abeli-
an gauge group U(1). In our Monte Carlo calculation
we performed 2000 iterations (with the Metropolis al-
gorithm and 10 hits per link) to equilibrate the system
and proceeded then to 200 measurements, separated
from each other by 20 Monte Carlo iterations, of the
correlation functions for all rectangular loops with one
spatial side of length varying from O to 7 links and one
temporal side of length ranging from 4 to 12 links.
The computation is not straightforward, because of the
large number of operations needed to calculate all indi-
vidual loop factors with insertions and the very large
number of variables involved. The details of the pro-
gram that we developed for the calculation will be
presented in a separate publication.!? We wish, how-
ever, to mention here the following points which may
be of general interest.

As a first step for the measurement of the observ-
ables, the configuration of the gauge variables is
transformed to the temporal gauge US=1, extending
the lattice by the amount necessary to contain all
measurable loops (periodic boundary conditions in
time cannot be maintained in the temporal gauge).
The advantage of the temporal gauge is that the trans-
port factors along the sides of the loops with the field
insertions become equal to the identity, so that no ma-
trix multiplications are needed to reconstruct the fac-
tors corresponding to the temporal sides once the lat-
tice field strengths are calculated; moreover, the sum-
mations of the field strengths corresponding to the in-
tegrals over tand ¢’ can be performed before the loops
are closed, with enormous saving in computer time.
The transport factors corresponding to the spatial bases
of the loops are calculated by the ‘‘multihit’”> method
to reduce variance as proposed by Parisi, Petronzio,

and Rapuano'?; i.e., the U} variables in the basis fac-

tor are first averaged in the fields of the neighboring
U’s and then multiplied. In the process, the field
strengths are calculated as well and transport factors
and field strength are temporarily stored in large
memory. Finally, in a double loop over time coordi-
nate and time extent of the loop, the field strengths
are summed and combined with the transport factors
for the bases in such a way as to reproduce the re-
quired integrals.

Our results are displayed in Figs. 1-4, where the
functions —dVy/dr, dV,/dr, V3, and — V, are ex-
pressed in lattice units. The potentials have been
determined by performing linear fits to the depen-
dence of the integrals on the time extent of the loops.
We included all data from T=4a to T=12a in the
fits. Fits based on the interval 5a-12a, as well as a
determination from the finite differences at subse-
quent values of t give consistent results, although
generally with larger errors. We estimated the statisti-
cal errors by repeating all calculations over subsamples
of measurements, obtained by leaving out of the total
sample sets of approximately 20 consecutive measure-
ments, following a procedure very similar to the one
outlined by Gottlieb er all* We also evaluated the er-
rors from the quadratic fluctuations, finding generally
consistent results. At the lowest separations one ex-
pects distortions due to lattice artifacts. To estimate
the possible size of such errors, we computed correc-
tion factors based on the following idea. The field
strengths are given by averages which involve several
plaquettes; as a consequence, the central points of the
plaquettes are not all at separation r, but rather they
are at separations r’ which may substantially differ
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FIG. 1. Monte Carlo results for the spin-dependent po-
tential V.
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tential V5, before (crosses) and after (circles) the correction
for lattice artifacts discussed in the text.

from r at close lattice distance. The correction is made
by rescaling the contributions of the plaquettes by the
factors [either (r/r')? or (r/r')?] which would follow
from first-order perturbation theory. One sees from
the figures that the correction is indeed substantial for
r=a (and tends to make the points conform better
with the perturbative behavior expected at short dis-
tances), but becomes almost negligible already at
r =2a, giving one some confidence that for all but the
smallest separations lattice artifacts may be under con-
trol.

One observes a clear nonperturbative long-ranged
component in the spin-orbit potential V', whereas all
the other spin-dependent potentials appear to be short
ranged and similar to what one would expect from per-
turbation theory. Such behavior appears compatible
with the experimental data, according to the most re-
cent phenomenological analyses.'* Of course, the real
test would come from a direct computation of the
spectroscopic observables from the calculated poten-
tials. For this, one must be able to rescale the spin-
dependent potentials, according to a suitable renormal-
ization factor. As a heuristic argument for the deter-
mination of such factor, we offer the following con-
sideration. The spin-dependent potentials always ap-
pear in the Hamiltonian divided by m?, m being the
quark mass. Since the energy levels must be a
renormalization-group invariant, it appears plausible
that the lattice values for the potentials be divided by

46

FIG. 3. Same as in Fig. 2, but for the spin-dependent po-
tential V;.
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FIG. 4. Same as in Fig. 2, but for the spin-dependent po-
tential V.
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the bare, Lagrangean mass squared. Equivalently,
they should be rescaled by a factor f= (mg/m)?, mg
being the renormalized quark mass effectively used in
the solution of the Schrédinger equation. A recent
calculation of hadronic masses in the quenched ap-
proximation,!® on a lattice equal in size to the present
one and at B=06, suggests mg/m =2, for quarks giv-
ing origin to mesons comparable in mass to the lowest
excitations of the J/¢ family. This gives f=4. Ac-
cepting this renormalization and adopting the value
a=2.21 GeV, inferred from Ref. 4, one obtains for
the spin-dependent potentials in physical units the
values on the scales at the right-hand sides of the fig-
ures. On the basis of Lorentz invariance, Gromes!’
has derived a relationship among the potentials, name-
ly, V+ V= V,=0. It is noteworthy that the Gromes
relation appears to be reasonably well satisfied by the
potentials after renormalization.

It would be of obvious interest to verify the scaling
properties of the spin-dependent potentials and to ap-
ply them to a calculation of the levels of the heavy-
quark families. Work along these lines is in progress.
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