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Turbulent Relaxation to a Force-Free Field-Reversed State
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The evolution of nonequilibrium initial conditions of an incompressible magnetohydrodynamic Z
pinch is described by a three-dimensional, pseudospectral numerical code. Magnetohydrodynamic
turbulence develops in the resistive, nonviscous magnetofluid, resulting in the selective decay of
the energy relative to the magnetic helicity, at Lundquist numbers of only a few hundred. An inte-
rior force-free region grows with time and achieves spontaneous reversal of the toroidal magnetic
field at the wall, without the necessity of an external electric field.

PACS numbers: 52.55.Ez, 47.65.+a, 52.65.+z

Theoretical or computational treatments of magne-
tohydrodynamic (MHD) pinches usually have been
described in terms of the evolution of unstable normal
modes of laminar equilibria. However, the formation
of Z pinches can be violent, and there may be regimes
in which laminar equilibrium conditions are never a
good initial approximation.!=* The nonlinear evolution
of the resulting magnetic and velocity fields is of in-
terest. In explaining Z-pinch behavior, it has been
conjectured*® that the resulting MHD turbulence
leads to a ‘“‘selective decay’’’~!0 of energy relative to
magnetic helicity. This idea has received some numer-
ical support in two dimensions,®® with axisymmetry,!°
and in three dimensions'!!? (see the recent review by
Hasegawa!?). The physical bases of ‘“‘selective decay’’
turbulent processes have been presented in Refs. 7-10
and 13.

The nature of selective decay becomes clear from
the spectral representations of the two ideal invariants,
energy and magnetic helicity. The former derives a
higher fraction of its contributions from the larger
wave numbers, where the dissipation occurs, and so is
more affected by the decay of the short-spatial-scale
expansion coefficients. The result is a decrease in ra-
tio of the energy to magnetic helicity. At the lower
limit of this ratio, a ‘“‘force-free’’ state results.'* For
high enough currents, and a given toroidal magnetic
flux, this implies reversal of the toroidal component of
the magnetic field near the outer wall,*® thought to be
desirable for the achievement of quiescence and con-
finement.

We report nonlinear MHD turbulence computations
of evolving Z pinches which achieve spontaneous
self-reversal of the toroidal magnetic field at the wall.
The computation does not contain (1) external electric

fields, (2) initial regions of diminished toroidal flux
near the wall (‘“‘aided” reversal), or (3) finite
compressibility. We use broad-band-noise initial con-
ditions not close to an equilibrium and a Lundquist
number S of a few hundred. There is no viscous
stress. Related, but significantly different, computa-
tions have been reported by Sykes and Wesson!!; Ay-
demir and Barnes'’; Schnack, Caramana, and Nebel!é;
Werley, Nebel, and Wurden!”; and Horiuchi and
Sato.!® The present calculation is closest to that of Ay-
demir and Barnes'® and Horiuchi and Sato.'? Our nov-
el features include (1) a demonstrable connection
between field reversal and selective decay to a force-
free state; (2) much lower values of S (a few hundred
here, as contrasted with = 5x 10* in Ref. 15); and (3)
broad-band-noise nonequilibrium initial conditions,
giving about as much small-scale turbulence as the dis-
sipation will permit. The turbulence, the relaxation,
and the force-free state are all aspects of a single pro-
cess.

We solve the one-fluid incompressible MHD equa-
tions in a region which is periodic in the z direction
and is terminated by a smooth, square, rigid, perfectly
conducting boundary in the x and y (poloidal) direc-
tions. In a standard set of dimensionless variables, the
square poloidal boundary has edge length 7 and the
periodicity length in z is 27r. The dimensionless induc-
tion equation is 9B/97/ =V x (vx [B+By]) + S~V B,
where v is the velocity field, the total magnetic field is
B, =By+B, and S is the Lundquist number, or
dimensionless conductivity. The magnetic field
B,,.= B¢é, +B, where B, is a uniform constant.
V-v=0and V-B=0.

The numerics are a direct outgrowth of a 3D
code'® 2 recently used to solve the Strauss equations
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of “‘reduced’’ MHD. A new and central feature of this
code is that the boundary conditions are implemented
by the Turner-Christiansen functions?' as a pseudo-
spectral expansion basis rather than Fourier sine and
cosine series. The variable part of the magnetic field is
written as B=V X A, where

A(x,y,zt) = 2

ikt L@ X + OB ),

Xt =V Xj€;, Ejp=Vx(Vxye,),

& i1 = (cosjix ) (cosky Jexp(ik,z),
and

¥ = (sinjx ) (sinky Yexp(ik,z);

B= Ej,k,l (P it + bjsa T g1,

v= Ej_k,l (P + S T 1,
and

Pi=VxXjy, Tj=VXE.

The summations on the integer transverse-mode labels
typically run from zero to 16 or 32, and for / = k,, typi-
cally 16, 32, or 64. There are usually larger spatial
derivatives in z (‘‘2 numbers’’) than there are in x and
y (““m numbers’’) which develop dynamically. As a
test of the code, we have set S~ !=0 and run the code
through various segments of field-reversal simula-
tions. At a time of rapid change, while the code with
resistivity lost 5.4% of the total energy in 0.6 Alfvén
transit times, the code run in the ideal mode con-
served total energy to (4x1073)%.

Turbulent activation early in the run has been
achieved by our picking the initial current
i=J,(x,y;0)é, only, where j,= (sinx)(siny){10—9
xexp(—3[x—(7/2)1?=3ly — (#/2)1?)). We illus-
trate the results of about ten runs by describing in
some detail a run with § =500. Random noise with
i and sy, of order 10~ 2 is loaded initially into those
modes with j,k in the interval [4,8], and +/ in the
range [1,12]. The hollow current profile (which does
not stay hollow very long) is thought not to be unreal-
istic for pinches initiated by sudden wall electric fields,
and has been found by trial and error to generate tur-
bulence efficiently in a few Alfvén transit times of unit
distance (a unit of time). The hollow current profile is
one way, among others, of generating a large amount
of small-scale MHD activity on Alfvénic time scales.
The evolution is highly nonlinear, and is not simply
relatable to any known instability on any known equili-
brium.

Magnetic-field-line plots for B,,B, in an xy cut and
B,,B, in an xz cut are shown in Figs. 1(a) and 1(b).
Many modes are involved. Aximuthal Fourier analysis
around the largest circle that will fit inside the compu-
tational square reveals that the largest contribution to
the poloidal mode-number spectrum, for m=1,2,

..., 16, is m=1. Several global integral quantities,
volume averaged, are shown in Fig. 2.

Selective decay toward the relaxed minimum-energy
state is illustrated by a 3D perspective plot of the align-
ment cosine, j-B,,/jB,,, for times r=19.68 and
t =35.04 in Fig. 3. The precipitous drop in energy-to-
helicity ratio accompanies the formation of an interior
region, nearly force-free, and a boundary layer of
MHD activity which persists to the end of the run
(t=35.04). j and B, obey different boundary condi-
tions at a perfect conductor,?' and cannot align them-
selves perfectly at a wall.!? So far, the relaxation to
the force-free state has proceeded more dramatically
than the relaxation to a minimum-energy state, as
evinced by the greater constancy of the direction
cosine, as compared with plots of A= j:B,,/B,,.> The
further extent of relaxation to a force-free, minimum-
energy state is being computed. Figure 4 shows an
average (B, ,) over the outer wall, with S =150, 500,
and 1500. If Sis too low, the current decays to an ex-
tent that B (whose curl j is) cannot overcome B,. If S
is too large, too much small-scale turbulence develops
for the code to resolve (e.g., at S=500 and
16X 16 x 64 resolution; 15 h of Cray-2 time were re-
quired; doubling the resolution would have required
120 h).

Difficulties in resolving small scales at even modest
§ are nontrivial. In Fig. 5, magnetic-energy spectra
and Ohmic-dissipation spectra are plotted in an uncon-
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FIG. 1. (a) Magnetic field lines projected into the xy
plane at z =0, and (b) magnetic field lines of B,,,— B, pro-
jected into the xz plane at y = 7/2 and time ¢ = 35.04.

429



VOLUME 57, NUMBER 4

PHYSICAL REVIEW LETTERS

28 JULY 1986

0.343

0.274+

0.206 +

0137F o)

Normalized Globals

(b)

0069 ©

1 1 1 1

0000 6632 13264 19876 28529 33.160

Time
0462

0.389

T

0.277+

(1)

T

0.185

Normalized Globals

(d)

0.092 - (e

L

1 1 L 1

0000
0000 0632 13264 19036 29528 33.160

Time
FIG. 2. Decay of global integral quantities, volume aver-
aged: curve a, total energy x0.1; curve b, net toroidal
current X 0.1; curve c, kinetic energy; curve d, total magnet-
ic energy x0.1; curve e, total Ohmic dissipation; curve f, ra-
tio of total energy to magnetic helicity x0.1. Time is in
units of Alfveén transit time of unit distance.

ventional way. Plotted here, versus k,, is all the mag-
netic energy summed up to and including k,, in a spec-
tral decomposition, and all the Ohmic dissipation,
summed up to and including k,, for the S =500 and
S =1500 runs. If the quantity plotted had been fully
resolved, perfectly flat spectra at the upper values of &,
would result. Figure 5 seems to indicate that the
energy-containing scales of the S§ =500 run are rather
well resolved, but that the dissipation scales are not.
The S =1500 run is not well resolved by either mea-
sure. The two Kolmogoroff dissipation wave numbers
are 55.6 and 130.4, respectively, computed as [(j?)/
21?14, where n=S"".

The precipitous drop in both toroidal current and
energy in Fig. 2 is consistent with a recent extension of
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FIG. 3. (a) 3D perspective plot, looking from x =0, y =«
in the xy plane, at z =0 and time ¢ = 19.68, of the alignment
cosine, j- Bi/jBio, for $=500. (b) Same as (a), but at
time 7=35.04; relaxation toward a force-free state is ap-
parent.
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FIG. 4. The average total toroidal magnetic field (B;)
at the wall, plotted vs time, for S =150, 500, and 1500 runs.
The S = 1500 run is believed to be poorly resolved, but the
field reverses anyway.
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FIG. 5. Four tests of the adequacy of the spatial resolu-
tion. Each curve is the total value of a spectrally decom-
posed positive-definite quantity accumulated between zero
and k;, plotted as a function of k,. E, is 10X magnetic ener-
gy for the S =500 run and E; is 10 X magnetic energy for the
S +1500 run. D, is the Ohmic dissipation for the S = 500
run and D, is the Ohmic dissipation for the S =1500 run. A
consequence of good resolution for these quantities would
be that the curves would be flat to the left of k; max=32.
(The time is 19.68.)

Taylor’s theory*® due to Marklin.22 According to
Marklin’s (rectangular) calculation, the square-bound-
ary analog of a helical force-free state results when the
toroidal current I, is big enough that the ratio I,/ Byw?
exceeds a minimum which, for our system length 27,
lies at about 1.8. If the relaxation of the toroidal
current in Fig. 2 is assumed to be due to the plasma’s
efforts to get rid of enough energy that this quasiheli-
cal state is no longer the minimum-energy one, the ra-
tio (Jj,)/Bo=1,/Byw? of 1.54 at the end of the run is
not far below. The dynamical basis for such a conjec-
ture is not entirely clear, but a likely interpretation is
an incompatibility between the helical state and the
nonhelical symmetry which the boundary conditions
attempt to enforce. This interpretation will be pursued
in the future, as will the addition of external electric
fields, viscous stresses, and a no-slip boundary condi-
tion.
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