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We study low-energy elastic electron scattering from an atomic or molecular target for the case
where the initial state of the target is close in energy to target states of opposite parity. We show
that under these circumstances there is a range of small scattering angles in which the angular dis-
tribution varies rapidly. Experimental tests are suggested.

PACS numbers: 34.80.—i

The low-energy interaction of an electron with an
atom or molecule is a subject of long standing, from
both a physical and a mathematical point of view.
From a theoretical perspective it can be regarded as
belonging in part to the quantum theory of long-range
forces. As is well known, and expected on classical
grounds, the leading term at large distances in the ef-
fective (or ‘‘optical’’) potential describing the interac-
tion of an electron 1 with a neutral atom in its ground
state is given by

Vaip(r1) = — eag/2rf, (1)

where ap is the static electric polarizability of the
atom. Equation (1) holds even if relativistic effects
are included, provided that aj is appropriately de-
fined.! For most cases of interest it suffices to calcu-
late a g from the familiar nonrelativistic formula

ap=—%3 (0ldln) - (nldlO)/(Wo—W,), (2

where d is the electric-dipole operator (d=er for a
one-electron atom), the sum is over a complete set of
eigenfunctions |n) of the nonrelativistic atomic Ham-
iltonian with eigenvalues W,, and |0) denotes the ini-
tial state of the target, which for simplicity is taken to
be an S state. In practice, the asymptotic form (1) is
used only to compute the partial-wave phase shifts for
[ =2, by use of the Born approximation for tans,. For
smaller values of / especially /=0, it is necessary to
do better, e.g., by numerical solution of the

fi£2) = —

Schrédinger equation or by use of a variational princi-
ple; there is an extensive literature devoted to this sub-
ject.?

This approach fails when the initial state of the tar-
get is very close in energy to other target states of op-
posite parity, even if the electron kinetic energy is
large compared to the energy difference between the
states. The scattering is then not adequately described
by a potential for any partial wave. This situation was
considered long ago and a ‘‘close-coupling method’
was developed® to deal with it. That method focuses
on the calculation of individual partial waves. For the
differential elastic-scattering cross section at small an-
gles, in the degenerate case that we study here, there
is a singularity in the scattering angle f(p,cosf) at
small & whose calculation would require the summa-
tion of an infinite number of partial waves.* In this
Letter, we show that the exact behavior of the elastic-
scattering amplitude at small angles can be obtained by
a careful treatment of the second Born approximation
to f. Previous discussions have not considered the dif-
ferential cross sections for elastic scattering and so
have not found the singularity that we discuss.’

For simplicity let us ignore spin and exchange and
consider a neutral target involving a valence electron 2
in an initial S state, with wave function ¢y(r,). Let
¢"(r,) (m=0, +1) denote the wave functions of a
nearby triplet of Pstates. The contribution f£2 of this
triplet to f‘?), the second Born approximation® to the

I elastic-scattering amplitude £, is given by
_'E_ d3k (p,!¢0|U|kr¢T><k:¢T'Ulp) ¢0>

27 (27)3

Wo+p¥2m— W,—k¥2m +ie (&)

Here Ip) , |p’), and lk) denote initial, final, and intermediate plane-wave states of the incident electron 1, respec-

tively, and

U=e¥ry,—e¥r

4)

is the sum of the Coulomb interaction of 1 with the target electron 2 and with the nucleus.’
One can see most simply the problems that arise when W, — W, is small by making not only the dipole approxi-
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mation, i.e., replacing U by its asymptotic form for r,
much larger than r,,

U— Ugp= e’ 1y/r{, (5)

but also making the adiabatic approximation, i.e.,
neglecting the projectile excitation energy (k%— p?)/
2m relative to the target excitation energy W,— W,.
Then (3) reduces to

Y- (ﬁw)dip,ad: —(m/2m) (p'| V4, Ip), (6a)
where
Viip = — €%ap/2rt. (6b)

Here a is the contribution of the P-state triplet to a:

ap=e(4m/A)rd, (6¢)
where 72 is a mean square transition length

8= (dolry|dT) - (d7Ir,l o) /3 (M
and

A=2m(W,— W,). (8)

The fact that ar becomes large if A becomes small is,
of course, a signal that the approximations involved
break down in the limit A— 0

To study the case of near degeneracy, i.e., small A,
we investigate the behavior of the function f,§2)
without making the adiabatic approximation. We
focus on the region where the momentum transfer Q
is small compared to the incident momentum p, corre-
sponding to small scattering angles, and the excitation

J

ImK = — (7%/p){Inl(p + ko)¥/Al — (Qp/ Ag)In[ (4o +

where ko= (p*—A)Y? and Ag= (A2 + k§QH)V2. The
function given by (13) depends sensitively on the
value of the ratio Q%/A. On restricting ourselves to
the region defined by (9) we find, for Q*/A >> A/p?,

ImK = — (7%/2p)In(4p?/ Q?), (14)
and, for Q%/A << A/p?,
ImK = — (7%/p)In[(p + ky)?/A]
=~ — (7%/p)In(4p?¥/A). (15)

Note that the constraint used in arriving at (14) still al-
lows the argument of the logarithm to be very small
and hence ImK to be relatively large, since it requires
only that Q% p? be large compared to (A/p?)2.

The above analysis suggests that in the region where
Q% p* << 1 and (14) holds we consider an approxima-
tion f to the amplitude f which is the sum of three
terms,

F=fot 18P o+ LS diplio- (16)
Here the first term fy=exp(idy)sindy/p is the exact

energy W, — W, is small compared to the incident en-
ergy p2/2m. To be precise, we shall assume that

9

without for the moment putting any restrictions on the
relative magnitude of Q% and A. On replacing U by
Ugip in (3) we get,® with ag the Bohr radius,

S5 = (ff) gy = — (2/7?) (rp/ag)?K (O, A;p),
(10)

Q2 << p?, A << p?

where Q= p — p’ and the function K is defined by
K= —fd3k(q-q’/q2q’2)(p2—A—k2+ie)“,
(1

with q=p—k and q¢'=k —p’. Because p? is larger than
A, the integral has both a real and an imaginary part,
corresponding to a dispersive and an absorptive contri-
bution to f§?.

On use of the identity (x+ie)~!'=P(1/x)
—imd(x), one finds that ReK, given by the
principal-value integral, is regular in the region de-
fined by (9) and has a finite value in the limit Q> — 0,
A— 0, given by

ReK (0,0;p) = —m3/2p. (12)

However, the function ImK, given by the delta-
function integral, is singular for Q?— 0 if A=0 and
therefore must be examined more carefully. The in-
tegral for ImK may be evaluated analytically, with the
result that

koQ)/Al}, (13)

/=0 amplitude; the second term is the contribution to
£ arising from intermediate atomic states which are
not close in energy to the initial target state, calculated
in the dipole-adiabatic approximation; and the last
term is the value of (% )y, obtained by using the ap-
proximation to ImK given by (14). The subscript /=0
indicates that the spherical average of the quantity in
question is to be subtracted. This is necessary in order
to avoid double counting, since f; already contains the
/=0 part of the second Born approximation.
The /70 part of the purely real amplitude g?is

(gP))0= —zﬂﬂf &rljo(0r) —j¢ (pr)IVe, (),

amn
—e%af/2r* and af is a

where jjo(x) =sinx/x, Vg, =

reduced polarizability defined by af=ar—ar. A
short calculation shows that
(8P )jmo=(maf/12ay) (4p—3Q). (18)

To find [ImK 1,.¢, we calculate the angular average of

417



VOLUME 57, NUMBER 4

PHYSICAL REVIEW LETTERS

28 JULY 1986

ImK from (13) and find that

[ImK 1juo=(7%/p) ((Qp/A)In[(4o+koQ)/A]l—In(4p?/A) + 5 + O (A/p?) ).

For Qp >> A this reduces to
[ImK Jjeo= — (7%/2p)In[(4p?/ Q%) — 1] (20)

The quantity [ReK ],x¢ has no In(p?/Q?) term, con-
sistent with (13); calculation shows that the product
p[ReK 1,0 is of order Q% p? and therefore negligible
for Q? << p*. As Q*— 0, the right-hand side of (20)
has the same singularity as that of (14), since that
singularity comes from the long-range part of the in-
teraction and is not affected by the removal of any fi-
nite number of partial waves.

Another way to obtain (14) is from the partial-wave
expansion for f(p,cosf). If one makes the dipole ap-
proximation in the computation of the partial-wave
amplitudes f;(p), then in the case of exact degeneracy
and with neglect of coupling to atomic states with dif-
ferent energies, the corresponding quantities f;(p) can

Ref=p~'[cosdysindg+ (maf/3ag) p(1—30/4p) + p(ReK ) 0]

and

Im/f=p~sin?,+ C(Q,p)]1, (23)
with

C(Q.p) = (rp/ag)[in(4p?/ Q%) —11. (24)

Note that C(Q,p) depends only on the scattering an-
gle, not on the energy.

To be concrete, let us consider experiments for
which the kinetic energy T=p*/2m is of order 1 eV
and the scattering angle 6 is of the order of 0.1 rad.
With af ~ ag, the second term in (22) is then of or-
der 0.1 and we neglect it, together with the third term,
relative to the first term in (22). However, with
rpfag~1, the quantity C(Q,p) is of order
In(4p%/ Q%) ~ In4/6? =1n400 = 6, and thus the second
term in (23) will dominate the first term. The cross
section in this region will then be roughly given by’

4o p=2[sinZs,+25in%8,C (Q.p) + C2Q.p)]
(25)

dQ
and have the strong angular dependence predicted by
(24).

We see that in order to make the contribution from
the quasidegenerate states large compared to that of
other states we need to consider kinetic energies which
are large compared to W, — W, but not large compared
to the other dipole-connected states. There are several
circumstances in which this condition can be satisfied.
One involves electron scattering from H or H-like ions
in the metastable 2 state, which is split from the 2P/,
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be computed exactly, since in diagonalized form the
effective scattering potential is just proportional to
1/r%. This was done long ago by Seaton.” However,
Seaton did not discuss the behavior of the associated
sum f(p,cos#). It is straightforward to show that if
each f;(p) is expanded in powers of rp/ay and only the
leading term is retained, this sum reproduces the loga-
rithmically singular term in (14). Higher-order terms
in rp/ay represent the contributions of higher-order
Born approximations, but these are not singular for
small 6.

We are thus led to study an approximation to the
differential cross section given by

do/dQ = |f|*=|Ref|*+ |Imf]|?, (21)

where

(22)

[

state by the Lamb shift, of order 4x10~% eV. In this
case the condition Qp >> A, equivalent to
6 >> A/2mT for small angles, is easy to satisfy. If, for
example, 8 =1°, In(4p*/ Q?) =9, so that there is a
substantial enhancement and we only need 7 >> 10~
eV. Another case involves electron scattering from an
excited S state of an alkali atom such as Na. The
difference W(4s)— W(4p) is 0.6 eV so that for
8 =10° we need T >> 3 eV while In(4p%/ 0?) = 5.

In order to observe convincingly the effect in ques-
tion, one must be able to distinguish elastic scattering
from inelastic excitation of the nearby P state, a pro-
cess which may have a differential cross section which
is much larger and which may vary more rapidly with
angle than the elastic differential cross section. In
both of the above-mentioned cases the elastic scatter-
ing should be distinguishable from inelastic scattering
to the P state, through the observation of the prompt
photon from the decay of the P state.

A third case which would seem favorable for observ-
ing the effect in question is elastic scattering from a
polar molecule. Here the dipole matrix element comes
from a transition between a / =0 and a J =1 rotational
state and W, — W;~ 1073 eV, so that for 6 =1° we
only need T >>0.05 eV. However, for scattering
from a molecule it appears more difficult to distinguish
elastic scattering from rotational excitation.

Finally, let us consider the extent to which the effect
in question can be usefully described by a ‘‘poten-
tial.”’'® One can see from (12) and (13) that if a po-
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tential Vv is defined by the Fourier transform

v = = 2T [ 30 exp(—iQ 1) /P (QpsA),
Q27)
then vV is both complex and strongly dependent on
energy. The behavior of %V for large r depends on the
behavior of f2 for Q — 0, with p fixed. For A=0
and p=0, we get (ff?)gpxip~'In(Q/p) so that
Y « i/ pr3 for large r. Thus the introduction of a poten-
tial does not seem to be useful in the present context.
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