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Low-Energy Electron-Atom Scattering: The Case of Near Degeneracy
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%e study low-energy elastic electron scattering from an atomic or molecular target for the case
where the initial state of the target is close in energy to target states of opposite parity. %'e show
that under these circumstances there is a range of small scattering angles in which the angular dis-
tribution varies rapidly. Experimental tests are suggested.
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Schrodinger equation or by use of a variational princi-
ple; there is an extensive literature devoted to this sub-
ject.2

This approach fails when the initial state of the tar-
get is very close in energy to other target states of op-
posite parity, even if the electron kinetic energy is
large compared to the energy difference between the
states. The scattering is then not adequately described
by a potential for any partial wave. This situation was
considered long ago and a "close-coupling method"
was developed3 to deal with it. That method focuses
on the calculation of individual partial waves. For the
differential elastic-scattering cross section at small an-
gles, in the degenerate case that we study here, there
is a singularity in the scattering angle f(p, cos8) at
small 8 whose calculation would require the summa-
tion of an infinite number of partial waves. In this
Letter, we show that the exact behavior of the elastic-
scattering amplitude at small angles can be obtained by
a careful treatment of the second Born approximation
to f. Previous discussions have not considered the dif-
ferential cross sections for elastic scattering and so
have not found the singularity that we discuss. 5

For simplicity let us ignore spin and exchange and
consider a neutral target involving a valence electron 2
in an initial S state, with wave function @0(r2). Let
@P(r2) (m =0, +1) denote the wave functions of a
nearby triplet of P states. The contribution fpt2~ of this
triplet to f ', the second Born approximation to the
elastic-scattering amplitude f, is given by

eo)

The low-energy interaction of an electron with an
atom or molecule is a subject of long standing, from
both a physical and a mathematical point of view.
From a theoretical perspective it can be regarded as
belonging in part to the quantum theory of long-range
forces. As is well known, and expected on classical
grounds, the leading term at large distances in the ef-
fective (or '"optical" ) potential describing the interac-
tion of an electron 1 with a neutral atom in its ground
state is given by

Vz;~(r& ) = —e~otF/2r~,

where nq is the static electric polarizability of the
atom. Equation (1) holds even if relativistic effects
are included, provided that otE is appropriately de-
fined. ' For most cases of interest it suffices to calcu-
late otE from the familiar nonrelativistic formula

,= --,' X„(0)d(n) (nid(0)/( W, —W„), (2)

where d is the electric-dipole operator (d= er for a
one-electron atom), the sum is over a complete set of
eigenfunctions

~
n ) of the nonrelativistic atomic Ham-

iltonian with eigenvalues W„', and ~0) denotes the ini-
tial state of the target, which for simplicity is taken to
be an 5 state. In practice, the asymptotic form (1) is
used only to compute the partial-wave phase shifts for
I » 2, by use of the Born approximation for tan5t. For
smaller values of I, especially /=0, it is necessary to
do better, e.g. , by numerical solution of the

(,) m t
d'k (p'. 4o~Ulk 4P) (k. @P~Utp,y(2)

(2m) Wo+ p /2m —Wi —k /2m

Here (p), ~p'), and ~k) denote initial, final, and interm
tively, and

ediate plane-wave states of the incident electron 1, respec-

U= e /r~2 —e /r~
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is the sum of the Coulomb interaction of 1 with the target electron 2 and with the nucleus.
One can see most simply the problems that arise when W& —Wo is small by making not only the dipole approxi-
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V...= ~',/2r, '. (6b)

Here nz is the contribution of the P-state triplet to nz

nE = e2(4m/b, ) rp',

where rg is a mean square transition length

fp2 f Ht P8 ga

(6c)

5 = 2m( Wi —W'ii). (8)
The fact that nq becomes large if b becomes small is,
of course, a signal that the approximations involved
break down in the limit b —0

To study the case of near degeneracy, i.e. , small b, ,
we investigate the behavior of the function fr~2'

without making the adiabatic approximation. We
focus on the region where the momentum transfer g
is small compared to the incident momentum p, corre-
sponding to small scattering angles, and the excitation

mation, i.e., replacing U by its asymptotic form for ri
much larger than r2,

U =e2r r/ri',

but also making the adiabatic approximation, i.e. ,
neglecting the projectile excitation energy (k —p2)/
2m relative to the target excitation energy Wi —Wo.
Then (3) reduces to

fp" (fp )dip, ~d= (m/2~) (p'I Vd;~ Ip)

where
where Q = p —p' and the function K is defined by

K= —
J d3k(q. q'/q2q' )(p2 —5 —k2+ie)

with q = p —k and q' = k —p'. Because p2 is larger than
4, the integral has both a real and an imaginary part,
corresponding to a dispersive and an absorptive contri-
bution to gp'".

On use of the identity (x+ie) '=P(1/x)
—im5(x), one finds that ReK, given by the
principal-value integral, is regular in the region de-
fined by (9) and has a finite value in the limit Q~ 0,
b —0, given by

ReK(0, 0;p) = —m'/2p. (12)

However, the function ImK, given by the delta-
function integral, is singular for Q 0 if 5 =0 and
therefore must be examined more carefully. The in-

tegral for ImK may be evaluated analytically, with the
result that

energy 8'& —8'0 is small compared to the incident en-
ergy p /2m. To be precise, we shall assume that

g (& p, A&(p,
without for the moment putting any restrictions on the
relative magnitude of Q2 and A. On replacing U by

Ud„in (3) we get, with ao the Bohr radius,

fp" —(fp")dp= —(2/7r') (rp/ao)'K(g, 6;p),
(10)

ImK= —(m/p)[ln[(p+k )2/b] —(Qp/A )in[(A +k g)/6]], (13)

(p2 Q) 1/2 and Qo (iI2+ k2g2) 1/2

function given by (13) depends sensitively on the
value of the ratio Q2/A. On restricting ourselves to
the region defined by (9) we find, for Q2/5» b, /p2,

ImK = —(n'/2p) ln(4p'/g'), (14)

and, for Q~/5 (( b,/p2,

ImK = —(m'2/p) ln[(p+ ko)2/g]

= —(~'/p) In(4p'/b, ). (15)

Note that the constramt used in arriving at (14) still al-
lows the argument of the logarithm to be very small
and hence ImK to be relatively large, since it requires
only that Q2/p2 be large compared to (b,/p2) 2.

The above analysis suggests that in the region where
Q/p «1and (14) holds we consider anapproxima-
tion f to the amplitude f which is the sum of three
terms,

f=fo+ [~"']i~o+ [(fp")d;p]i~o. (16)

Here the first term fo = exp(iso) sin5o/p is the exact

/=0 amplitude; the second term is the contribution to
f'2~ arising from intermediate atomic states which are
not close in energy to the initial target state, calculated
in the dipole-adiabatic approximation; and the last
term is the value of (fpt2~) d;, obtained by using the ap-
proximation to ImK given by (14). The subscript /&0
indicates that the spherical average of the quantity in

question is to be subtracted. This is necessary in order
to avoid double counting, since fo already contains the
/=0 part of the second Born approximation.

The i&0 part of the purely real amplitude g' ~ is

[g'"]i ii= — „', d'r[jo(gr) —
jo2 (Pr)] Vdp(r),

(17)
where jo(x) = sinx/x, Vd ~

= —e nF/2r, and nz' is a
reduced polarizability defined by nz'=nz —nz. A
short calculation shows that

[g'2']i~o= (n nE'/12ao) (4p —3Q).
To find [ImK]i„o, we calculate the angular average of
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ImK from (13) and find that

[ImK ], = (m'/p) [(Qp/3, ) In[(A, + k,Q)/b. ] —ln(4p'/b, ) + —,
' + 0 (b,/p') }.

For Qp )& 5 this reduces to t

[ImK]1~0= —(7r /2p)ln[(4p /Q ) —1]. (20)

The quantity [ReK]»o has no ln(p /Q ) term, con-
sistent with (13); calculation shows that the product
p[ReK]»0 is of order Q2/p2 and therefore negligible
for Q2 && p2. As Q2 0, the right-hand side of (20)
has the same singularity as that of (14), since that
singularity comes from the long-range part of the in-
teraction and is not affected by the removal of any fi-
nite number of partial waves.

Another way to obtain {14) is from the partial-wave
expansion for f(p, cos8). If one makes the dipole ap-
proximation in the computation of the partial-wave
amplitudes fj(p), then in the case of exact degeneracy
and with neglect of coupling to atomic states with dif-
ferent energies, the corresponding quantities fI(p) can

d~/d& = Ifl'= }Refl'+ IImfl', (21)

where

be computed exactly, since in diagonalized form the
effective scattering potential is just proportional to
1/r2. This was done long ago by Seaton. ' However,
Seaton did not discuss the behavior of the associated
sum f(p, cos&). It is straightforward to show that if
each f&{p) is expanded in powers of rp/ao and only the
leading term is retained, this sum reproduces the loga-
rithmically singular term in (14). Higher-order terms
in rp/ao represent the contributions of higher-order
Born approximations, but these are not singular for
small 8

We are thus led to study an approximation to the
differential cross section given by

Ref = p '[cos50 sin50+ (mnq'/3ao) p2(1 —3Q/4p) +p(ReK)1~0] (22)

Imf = p
' [sin'&0+ C( Q,p) ], (23)

C(Q,p) = (rp/ao)'[In(4p'/Q') —1]. (24)

Note that C(Q,p) depends only on the scattering an-

gle, not on the energy.
To be concrete, let us consider experiments for

which the kinetic energy T= p2/2m is of order 1 eV
and the scattering angle 8 is of the order of 0.1 rad.
With nz' —a03, the second term in (22) is then of or-
der 0.1 and we neglect it, together with the third term,
relative to the first term in (22). However, with

rp/ao I, the quantity C( Q,p ) is of order
ln(4p2/Q2) —1n4/&2 = ln400 = 6, and thus the second
term in (23) will dominate the first term. The cross
section in this region will then be roughly given by

=p '[sin 80+ 2 sin SOC (Q,p ) + C (Q,p ) ]

(25)

and have the strong angular dependence predicted by
(24).

We see that in order to make the contribution from
the quasidegenerate states large compared to that of
other states ~e need to consider kinetic energies which
are large compared to 8

~
—Wo but not large compared

to the other dipole-connected states. There are several
circumstances in which this condition can be satisfied.
One involves electron scattering from H or H-like ions
in the metastable 2S state, which is split from the 2Pt~2

state by the Lamb shift, of order 4X10 6 eV. In this
case the condition Qp » 5, equivalent to
8 &) b,/2mT for small angles, is easy to satisfy. If, for
example, 8=1', ln(4p2/Q2) =9, so that there is a
substantial enhancement and we only need T » 10
eV. Another case involves electron scattering from an
excited S state of an alkali atom such as Na. The
difference W(4s) —W(4p) is 0.6 eV so that for
8 = 10' we need T » 3 eV while ln(4p'/Q2) = 5.

In order to observe convincingly the effect in ques-
tion, one must be able to distinguish elastic scattering
from inelastic excitation of the nearby P state, a pro-
cess which may have a differential cross section which
is much larger and which may vary more rapidly with
angle than the elastic differential cross section. In
both of the above-mentioned cases the elastic scatter-
ing should be distinguishable from inelastic scattering
to the P state, through the observation of the prompt
photon from the decay of the P state.

A third case which would seem favorable for observ-
ing the effect in question is elastic scattering from a
polar molecule. Here the dipole matrix element comes
from a transition between a J=0 and a J= 1 rotational
state and Wt —Wo —10 3 eV, so that for 0=1 we
only need T » 0.05 eV. However, for scattering
from a molecule it appears more difficult to distinguish
elastic scattering from rotational excitation.

Finally, let us consider the extent to which the effect
in question can be usefully described by a "poten-
tial. "' One can see from (12) and (13) that if a po-
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tential V is defined by the Fourier transform

(2m)' "~ d'0exp( —ig. r)f'"(gp;5),

then V is both complex and strongly dependent on
energy. The behavior of V for large r depends on the
behavior of f 2' for Q 0, with p fixed. For b, = 0
and p = 0, we get (fp )d;occ tp ln( g/p ) so that
V ~ i/pr3 for large r Th. us the introduction of a poten-
tial does not seem to be useful in the present context.
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