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Finite-Basis-Set Approach to the Dirac-Hartree-Fock Equations
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A variational Dirac-Hartree-Fock procedure is introduced, which does not exhibit problems of
spurious roots, variational collapse, or continuum dissolution. The optimized eigenvalues converge
uniformly from above to the numerical Dirac-Hartree-Fock results as the dimension of the basis set
is increased. Results for the 1s2, 2s2, and 2pj~j2 shells are presented as examples.
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E= (Pc2), P= (I)

is used to find the correct solution. The results are
unreliable, and indeed the ground-state energy quoted
for helium falls below the value obtained numerically.
The virial-theorem method has also been used by Ka-
gawa, 8 although no discussion of bounds or spurious
roots %8s g&Yen.

The development of numerical techniques to in-
tegrate the Dirac-Hartree-Fock (DHF) equations has
proven to be very successful in relativistic atomic
physics calculations. Accurate calculations are now
performed by use of relativistic DHF'2 and relativistic
random-phase approximation3 codes, in which the
"Brown-Ravenhall disease" or "continuum dissolu-
tion"~ of the Hamiltonian does not appear despite the
fact that no a priori projection of the Hamiltonian into
positive-energy states is used.

An analytical approach to the problem, similar to the
one introduced by Roothaan in the nonrelativistic
case, is important for two reasons: It simplifies com-
plicated atomic calculations, and it provides a straight-
forward extension to relativistic calculations in
molecu les.

The first attempt at an analytical DHF procedure
was made by Kim. ' In it, a variation of the basis-set
parameters does not yield an upper bound to the total
energy. Instead, the relativistic virial theorem

1

An analytical approach using Gaussian wave func-
tions has been presented by Mark and Rosicky9 and
explored by Mark, Lischka, and Rosicky, '0 but the
basis set it employs does not provide bounds in gen-
eral. These methods fail to provide upper bounds to
atomic energies because they use incomplete variation-
al representations" ' of the one-electron relativistic
spectrum. An alternative approach applying a parti-
tioning technique is being investigated by Wood,
Grant, and Wilson. '4

In order to construct a complete variational
representation of the DHF energy spectrum, we
rewrite the DHF equations in the' $-8 representation
which proved to be instrumental in understanding the
Dirac-Coulomb problem. This representation is de-
fined by the transformation'2

g(r) =& '[q4(r)+&(r)],
f(r) =& '[@(r)—qe(r)], ()

~here

q = (K —y)/(nZ), y= [K —(crZ)2]1/2 (3)

A = [1+q2]' 2, g(r) and f(r) are the large and small
radial components, K is the Dirac quantum number, n
is the fine-structure constant, and Z is the nuclear
charge.

In terms of the upper and lower components $(r)
and 8(r ), '2 the radial DHF equations for closed shells
are (atomic units are used throughout)

Kg

0"Va

Kg
+eg 0! ~p, gy /A+A Xpgy

2—e, —2 +u Xp,,b ~, —tr&4s-

p, b= (2jb+ l)r 1 Yo(bb, r),

+1), Y (ab, r ) if i, + ib + L = even,
L

~3'g 'Ya

Ka r Ka

where a and b denote the shells, e is the one-electron energy in units of its rest mass, and

= 0 otherwise,

YL(ab, r2) = r2 J (r(/r)+' [g, (ri) gt, (ri) +f, (ri) ft, (ri)]dri.
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The basis set used in this work for each one-electron orbital with K ~ () is

1=1,2, . . . , X„, k=1, 2, . . . , N„,
(8)

ig, (r) 0„(r)
r —fj(r)& „(i) ' (9)

where A„are spherical spinors. Then the one-
electron energy e, associated with the ith shell and the
total energy E are given by

e, = 1;+$.(J;~ —K(~),

E= $,1;+ —,
' $,.~(J(~ —K()),

(10)

where JJ and KJ are the direct and exchange integrals,
respectively, and I= ('P~(HD —c2)~'P) with HD the
Dirac-Coulomb Hamiltonian.

A basis set of the form (8) with one exponential
parameter was introduced by Drake and Goldman" for
the one-electron Dirac-Coulomb case. The set satis-
fies all the right properties of bounds and complete-
ness, although spurious roots do appear for K ) 0. It
contains Nz vectors more than is necessary to describe

where the h.
t "l comprise a set of Xz arbitrary exponen-

tial parameters and N~ is the number of different
powers per exponential parameter in the basis set. We
follow the calculations for the Coulomb case, '2 and
take the values of the exponential parameters and the
number of powers per exponential parameter to be the
same for the @ and 8 functions. All the exponential
parameters are varied to minimize the total energy E.
Let 4, be the eigenvector for the ith shell for a given
value of the exponential parameters:

$(+2nZH) = (Z/K)(@p q&p),

where

(12)

(13)

a Dirac-Coulomb electron in a state with K ( 0.' This
basis set is used for the DHF case because the solution
0 =0, describing the lowest positive-energy states with
K & 0 in the Coulomb case, does not exist for the HF
potential. In other words, a finite set consisting of
eigenfunctions of the Dirac-Coulomb Hamiltonian is
incomplete and will not yield, in general, upper
bounds in the DHF case. Ishikawa, Binning, and San-
do'5 applied this basis set with one exponential param-
eter to the ground state of beryllium. This set, howev-
er, fails to provide bounds in the case ~ ) 0.'

In this work we have successfully applied a discrete
variational representation to the DHF equations for a
closed-shell system for any value of the quantum
number K. There are no spurious roots in the varia-
tional spectrum; the variational eigenvalues agree with
the numerical results to machine accuracy and are al-
ways upper bounds. For ~ & 0, the basis set (8) was
used. For ~ ) 0 we followed the method of Ref. 12
for the Dirac-Coulomb case, in which the variational
eigenvectors satisfy the correct nonrelativistic limit.
This is achieved by our constraining the basis vectors
to satisfy the following first-order condition at the ori-
gin:

TABLE I. Values of the one-electron energy (e) and the total energy (B for the Is'
shell in He and Nes+ for different sizes of the basis set (8). The results converge to the
numerical DHF values listed in the last line. N~ is the number of different exponential
parameters in the basis set and X„ is the number of powers per exponential parameter.

Z=10
A'),

1 2
1 3
1 4
1 5

1 6
1 7
1 8

2 2
2 3
2 4
2 5

Numerical

e (a.u. )

—0.896 525 24
—0.917 789 85
—0.917789 93
—0.917990 16
—0.917 990 16
—0.917990 56
—0.917990 62
—0.917969 47
—0.917990 30
—0.917990 6827
—0.917990 6881
—0.917990 6883

E (a.u. )

—2.847 793 82
—2.861 723 41
—2.861723 41
—2.861 813 02
—2.861 81302
—2.861813 11
—2.861 813 31
—2.861 805 55
-2.861 813 13
—2.861 813 3376
—2.861 813 3424
—2.861 813 3425

-43.951
—43.971
-43.971
-43.971
—43.971
-43.971
-43.971
-43.971
—43.971
-43.971
-43.971
-43.971

8660
8575
8575
9148
9151
9151
9165
9131
9164
916564
916 565
916 565

E (a.u. )

—93.969 473 08
—93,982 759 05
—93.982 759 05
—93.982 798 18
—93.982 798 43
—93.982 798 48
—93.982 799 53
—93.982 797 06
—93.982 799 41
—93.982 799 545
—93.982 799 545
—93.982 799 545
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TABLE II. Values of the one-electron energies (ei, ~2) and the total energy (E) for the
Is' and 2s' shells in Ne6+ for different sizes of the basis set (8).

1

1

1

1

1

1

1

2
2
2

2

N„

2
3

5
6
7
8

2
3
4
5

Numerical

ei (a.u. )
—37.921 39
—40.012 49
—40.495 30
—40.568 03
—40.585 29
—40.587 71
—40.588 30
—40.582 3490
—40.588 3703
—40.588 4040
—40.588 4051
—40.588 4059

~2 (a.u. )
—6.163 410
—7.156 977
—7.459 443
—7.493 634
—7.500468
-7.501 096
—7.501 307
—7.500 960 41
—7.501 31027
—7.501 33944
—7.501 33965
—7.501 339 80

F. (a.u.)

—103.886 38
—109.224 76
—110.13805
—110.236 63
—110.253 67
—110.255 51
—110.255 94
—110.2S1 8459
—110.2SS 9797
—110.256 0060
—110.256 0071
—110.256 0077

and q is defined in Eq. (3).
For states with ~ & 0, the following basis set satisfy-

ing conditions (12) has been used to represent the
solution

to Eqs. (4):
f

rry(k)
O,k

t

(14)

(15a)

(k) Kq(1+2K+2y) +q(z+K)t" )r
A. r y

(z+~) 'k))r

(Isb)
1 1

Kq (2K 2y —1) —(Z + «'"')r
) (k)~

+i,k =e (z + K)~'"') r
t

) (k) 1
4, *——e r"

t i

1

4," = e " 'ry+', (15c)
(a)

i,k 1'
where i =2, 3, . . . , Ny, and k =1,2, . . . , Ni, .

The DHF equations for a closed-shell system are
solved to self-consistency in the finite basis set
[(8),(15)]. Each step of the iteration process produces
a set of N&Ny positive-energy eigenstates and a set of
JVqN neyg ti ave erngyeeigenstates, or Ni, N„+ 1 for or-
bitals with k &0, for the one-electron orbitals. The
DHF procedure is repeated for different values of the
nonlinear parameters in order to minimize the total
energy.

The method has been applied to the ls, 2s, and
2p)]2 shells. The total energy F. is always an upper
bound to the value obtained by use of the numerical
DHF method. The one-electron energy e for each
shell is an upper bound to the numerical DHF value of
e when the total energy E is minimized for the finite

basis set. There are no spurious roots. The identity
(1) is satisfied for any size of the basis set at the varia-
tional minimum, implying that the virial-theorem con-
dition is necessary but not sufficient to determine the
DHF energies. Thus, the difference E (Pc2) g—ives
an estimate of the accuracy of the result for a specific
dimension of the basis set (i.e. , how well the
minimum was attained) but does not convey any infor-
mation regarding the DHF value of the energy.

In Table I we illustrate the convergence of the
results as the dimension of the basis set is increased,
for He and heliumlike Ne. e is the one-electron ener-

gy and E is the total energy of the 1s2 shell. In Table
II we display results for the 1s2 and 2s2 shells in Ne6+.
et and e2 are the one-electron orbital energies, and Eis
the total energy. In Table III we display results for the
1s, 2s, and 2@~~2 shells in Ne +. e i i, e i 2, and
et z are the one-electron orbital energies for the 1s, 2s,
and 2@i~2 states, respectively, and E is the total energy.
In all cases the optimized values of the energy are
upper bounds to the numerical DHF values towards
which they converge uniformly.

In conclusion, we have successfully implemented a
variational DHF procedure which is devoid of the
problems of spurious roots, variational collapse, or
continuum dissolution. The amount of computer time
involved is longer than for a similar nonrelativistic cal-

culation because twice as many vectors are needed and
because, the powers of r in the basis set being real, the
direct and exchange integrals in the DHF Hamiltonian
involve hypergeometric functions with infinite
numbers of terms. However, the computing power
available should allow the advantageous use of this
method in complex atomic and molecular calculations.
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TABLE III. Values of the one-electron energies for sstates (~ ~ ~, ~
~ 2) and the p~~2

state (~t 2), and the total energy (E) in atomic units for the Is', 2s', and 2p(~2 shells in
Ne" + for different sizes of the basis sets (8) and (15).

2 2
2 3
2 4

Numerical

—37.280 21
—37.298 24
—37.299 36
—37.299 44

—5.284 933
—5.290432
—5.290 676
—5.290 706

—4.542 993
—4.556 660
—4.557 226
—4.557 283

—12().555 88
—12().575 00
—120 575 89
—120.575 92

hospitality. Research support from the National Sci-
ences and Engineering Council of Canada (for S.P.G.)
and from the U.S. Department of Energy, Division of
Chemical Sciences, is gratefully acknowledged.

&~~Permanent address: Physics Department, University of
Western Ontario, London, Ontario N6A 3K7, Canada.

tJ. P. Desclaux, Comput. Phys. Commun. I, 216 (1969).
2I. Lindgren and A. Rosen, Case Stud. At. Phys. 4, 93

(1973).
3%'. R. Johnson, C. D. Lin, and A. Dalgarno, J. Phys. 8 9,

L303 (1976); W. R. Johnson and C. D. Lin, Phys. Rev. A

14, 565 (1976).
46. E. Brown and D. E. Ravenhall, Proc. Roy. Soc. Lon-

don, Ser. A 208, 552 (1951).
&M. H. Mittelman, Phys. Rev. A 4, 893 (1971), and 24,

1167 (1981); J. Sucher, Phys. Rev. A 22, 348 (1980), and

Phys. Rev. Lett. 55, 1033 (1985).
6C. C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).
7Y. K. Kim, Phys. Rev. 154, 17 (1967).
ST. Kagawa, Phys. Rev. A 12, 2245 (1975), and 22, 2340

(1980).
9F. Mark and F. Rosicky, Chem. Phys. Lett. 74, 562

(1980).
OF. Mark, H. Lischka, and F. Rosicky, Chem. Phys. Lett.

71, 507 (1980).
~&G. %. F. Drake and S. P. Goldman, Phys. Rev. A 23,

2093 (1981).
t2S. P. Goldman, Phys. Rev. A 31, 3541 (1985).
3K. G. Dyall, I. P. Grant, and S. Wilson, J. Phys. 8 17,

L45, 1201 (1984).
&4J. Wood, I. P. Grant, and S. Wilson, J, Phys. 8 18, 3027

(1985).
~5Y. Ishikawa, R. C. Binning, Jr. , and K. M. Sando, Chem.

Phys. Lett. 101, 111 (1983).
'6Y. Ishikawa, R. Baretty, and K. M. Sando, Chem. Phys.

Leu. 117, 444 (1985).


