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By means of a high-statistics Monte Carlo simulation, Fisher scaling is studied for pure SU(2)
and SU(3) lattice gauge theory. in both cases 2++ is found to be the lowest state above the vacu-

um, and the m(0++)/m(2++) giuebaii mass ratio is slightly larger than 1. For SU(2), Monte Car-
lo data smoothly continue the analytic m(0++)/m(2++) small-volume calculation towards the
infinite-volume continuum limit. Ne~ results for the ratio behveen the square root of the string
tension and the mass gap are also reported.

PACS numbers: 1l.l5.Ha

Glueballs' are the particles of the pure gauge sector of quantum chromodynamics (QCD). Theoretically as well
as experimentally they have remained a challenging problem. Lattice gauge theories provide us with a regulariza-
tion scheme that allows (in principle) non-perturbative calculations. For SU(Ã) lattice gauge theory (without
quarks) one has to calculate averages of gauge-invariant operators with respect to the partition function

Z =
! IItdU(l) exp( -W-'P X,Re Tr[I —U(j )] I. (I)

The product is over all links l of a four-dimensional
hypercubic lattice, and U(I) C SU(lV). For each pla-

quette p, U(p) is the ordered product of the four link
matrices surrounding the plaquette and dU is the
SU(N) Hurwitz measure. In this Letter we report
Monte Carlo (MC) results from simulations on L3L, ,

L, » L, lattices with periodic boundary conditions.
We are interested in the continuum limit, where the

lattice regularization becomes removed. The continu-
um limit is obtained for P ~, L && (, where ( is
the correlation length. The physical mass scale is set
by the mass gap m, defined to be the smallest energy
eigenstate above the vacuum. For P large the lattice
spacing a goes to zero like
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and mass ratios approach constant values according to
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The lowest mass above the vacuum is called mass gap
m„and its inverse defines the correlation length
(= (am) '. We shall find m= rn(2++).

Strong-coupling expansions have been carried out
in the Hamiltonian as well as in the Euclidean formu-
lation of lattice gauge theories. These calculations are
valid for small correlation length, Then extrapolations
to the physical limit g —~ are done. In these calcula-
tions m(0++) comes out to be the mass gap. The
m (2++) mass is only slightly higher and typically one
finds rn(0++)/m(2++) =0.9. Strong-coupling ex-
pansions, however, diverge already at a very small
correlation length g ( 1 and their continuum extrapo-

i
lations are therefore questionable.

Previous MC calculations~' attempted to follow the
mass spectrum beyond the validity of the strong-
coupling expansion towards larger correlation length.
Masses were estimated from correlations between vari-
ous Wilson-loop operators. For the 0++ state these
calculations were partially successful. The crossover
from the strong-coupling behavior to the weak-cou-
pling behavior (2) is clearly indicated around g = 0.6,
and rather reliable results could be obtained up to
( = 1.2. On the other hand, estimates for masses of
excited states seemed not to follow this crossover from
strong to weak coupling behavior. Instead, these mass
estimates suffered from large statistical noise at dis-
tances as small as already t = 1, where t is the
Euclidean-time separation between appropriate opera-
tors. This suggested the interpretation that excited
glueball states develop large masses in units of
m(0++). But the status was never satisfactory, as an
equivalent interpretation is to attribute the results to
bad trial wave functions for the excited states. In par-
ticular, the disappearance of the correlations into sta-
tistical noise at short distances made consistency
checks (from correlations at larger distances) impossi-
ble. Even worse, enhancing the signal by means of a
specialized 2++ source6 exhibited strong instabilities
at distance t =3 without allowing conclusions about
the asymptotic (t —~) mass value.

We here report results from reanalysis of the prob-
lem along an independent line of reasoning. We sys-
ternatically study the approach to the continuum limit
in Fisher's scalIng variable

z=L/g (4)

L is the edge size of the spacelike volume, and the ex-
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This operator couples to 0++ as well as 2++. In pre-
vious MC investigations strong signals were ex-
clusively obtained for 0++. In reliance on this experi-
ence, the results9 were misinterpreted to be mainly
0++. For our present investigation we have built ap-
propriate linear combinations of adjoint Polyakov
loops, projecting on the 0++ and the 2++ channels:

0' ( r ) = 0"(r ) + 0"( r ) + 0'( r ),

0' (r) = 0"(r) —&'(r).

(6a)

We further extended our calculations to the SU(3)
gauge group. The high statistics of our numerical
results is summarized in Table I. A sweep is defined
by the updating of each link on the lattice once. As in

tension in time direction, L„ is taken to be infinite.
For L sufficiently large, mass ratios will approach a
universal (L-independent) curve r (z) A. long this
curve the infinite-volume continuum limit is ap-
proached for z ~, whereas small z values allow ana-
lytic small-volume calculations. With the SU(2) gauge
group, spectrum calculations for small z were done by
Luscher and Munster, who find their expansion to
break down at z =1.5. Monte Carlo calculations for
small and moderate z became feasible due to the find-
ing that correlation functions between spatial Po-
lyakov loops in the adjoint SU(2) representation give
an excellent signal for glueball masses. Polyakov'o
loops are Wilson loops along straight lines which are
closed by periodic boundary conditions; for instance,
P"(y,z, r) is a loop in the x direction. They allow
Dobrushin-Lanford-Ruelle-improved" measurements
which, in turn, are partially responsible for the good
signal.

On a hypercubic lattice, different spin states may be
distinguished by our projecting out appropriate irre-
ducible representations of the cubic group. 3 ~ But, as a
result of limited time for software development, the
MC calculations of Ref. 9 were done for the correla-
tion function of the zero-momentum operator

Ref. 9, the SU(2) gauge group is approximated by the
icosahedral subgroup and a Metropolis program with
six hits per update is used. In case of the SU(3) gauge
group we run a Metropolis program with ten hits per
update. The first 2000—5000 sweeps are used for
reaching equilibrium and are discarded with respect to
measurements. For practical reasons the approxima-
tion of L, = ~ varies between L, = 24 and L, = 64.
After each few sweeps normal measurements for the
considered correlations functions are done„whereas
Dobrushin-Lanford-Ruelle-improved" measurements
are done approximately every twenty sweeps. Details
will be published elsewhere. They vary for different P
values and lattices.

For a single mass, the crossover from the small-
volume to the asymptotic (z ~) behavior is ex-
tremly rapid and, therefore, 9 prohibitive against quan-
titative matching of analytic results with MC data. As
we will demonstrate, this statement does not hold for
mass ratios. Figure 1 summarizes our SU(2) MC
results, and corresponding SU(3) results are given in
Fig. 2. The procedure used to extract masses was
described in Ref. 9. In Fig. 1 our m(0++)/m(2++)
MC data smoothly continue the analytic calculation,
which already gives an approximately straight line with

r (z) = m (0++ )/m (2++ ) = 1.2,

to larger z values. Different lattice sizes and P values
merge (within statistical errors) to one curve r(z),
hence supporting the proposition that Fisher scaling al-
ready holds with our rather small-sized lattices. At
large z values our data seem to indicate an approach to-
wards m(Q++)/m(2++) =1.0, but one has to be
careful with the interpretation. Presently, our large z
values mainly rely on rather small P values, because
we can easily reach large z by decreasing the correla-
tion length

(= [am(2++)] (8)

in Eq. (2). At small P values our data then become
contaminated by the nonuniversal strong-coupling do-
main, where m (0+ + )/m (2+ + ) = 1 holds for P 0.

TABLE I. Monte Carlo statistics.

L3L,

4324
4324
4'64

6332
8332
8332

2 ~ 25
2.40
2.70

2.40
2.70
3.00

103 s~eeps

752
244
182

4332
4332
4332
4332
4332
6332
6332
6332

5.8
6.0
6.2
6.4
6.6
5.8
6.0
6.2

10 sweeps

69
53

107
107
107
95
95
95
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FIG. 1. SU(2) data for m (0++ )/(2++ ) mass ratios
(upper part) and for MK/m (2++ ) (lower part). The
straight line in the upper part is the small-volume expansion
(Ref. 8) in the range where it may be trusted. The arrow in
the lower part denotes the z value, at which tunneling contri-
butions are claimed (Ref. 12) to become important. P
values are explicitely given.

Nonuniversal effects will disappear when one goes at
constant z to larger L and P values. Ideally, we will be
able to study these finite-size scaling corrections nu-
merically, but we have not yet succeeded in pushing
our calculations far enough. In conclusion, an
m (0++ )/m(2++ ) value slightly larger than 1 is most
supported. Where possible, we have checked on our
calculation of Ref. 9 and we found that the previously
estimated masses are compatible with present
m(2++) estimates. The admixture of 0++ accounts
for a small bias of always less than 4'/0. Qualitatively,
our SU(3) m (0++ )/m (2++ ) results of Fig. 2 are
similar to those for SU(2). Towards small z values
there is a tendency of m(0++)/m(2++ ) to increase.
Unfortunately, the analytic small-volume expansion
does not exist (work on it is in progress' ). Our pre-
liminary results'4 were for SU(3) only.

In the lower parts of Figs. 1 and 2 we present new
string tension results. '5 Measurement of the correla-
tion functions of Polyakov loops in the fundamental
representation allows determination of the energy E of
a 't Hooft'6 electric flux of length L. The 't Hooft
string tension is defined as K = E/L and was numeri-

FIG. 2. SU(3) data for rn(0 ++)/m(2++) mass ratios
(upper part) and for JK /m (2+ + ) (lower part). P values
are explicitely given.

cally first studied in Ref. 11. We plot results for

JK/m(2++).

They are approximately proportional to the m(0++ )/
m(2++) ratios, implying that JE/m(0++) is nearly
constant. For large z an approach to vK/m(2++)
=0.3 [slightly smaller for SU (2)1 is indicated
(without our taking into account the possible Coulomb
correction). Our results can be translated into
megaelectronvolts by the assumption JEC = 420 MeV.

Very recently, Koller and van Baal'2 did a small-
volume SU(2) calculation for tunneling contributions
from the effective Hamiltonian of Ref. 8. They
predict JK /m (0++ ) to drop down to approximately
zero for z less than = 1.2. If this can be confirmed by
MC data, a better understanding of the crossover from
small z to large z is achieved. Small z and reasonably
large L need high P values. As a result of using the
icosahedral subgroup, we were at the moment unable
to check their SU(2) prediction. For SU(3) our small-
est z values are around z = 0.7 and we have no signal
for v K /m(0++ ) falling down to zero. Another limi-
tation, showing up at high P values, is metastabilities
and the fact that the projection of adjoint Polyakov
loops on glueball wave functions becomes bad. Conse-
quently, even for the full group, we may encounter
problems when probing for very small z values. Tun-
neling contributions for the m(0++)/m(2++) ratio
should be calculated. They might explain the small
jump seen in Fig. 1 between the analytic m(0++)/
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m (2+ + ) results and our small-z MC data.
In conclusion, MC data for correlation functions in

non-Abelian gauge theories have been improved by
several orders of magnitude. Consequently, spectrum
calculations are now much more reliable. The calcula-
tions we propose include consistent use of Fisher's
scaling variable (3) which ensures that we are ap-
proaching the infinite-volume continuum limit z
on a universal curve. As results from different lattices
and P values have to fall on one curve, a consistency
check for finite-size limitations is included. The
m(0++)/m(2++) mass ratio MC data for the first
time smoothly continue analytic results, namely the
small-volume expansion of Ref. 8. This gives more
confidence in the MC results as well as in the hope
that the asymptotic behavior for z ~ is indeed
reached.
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