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Third Law of Black-Hole Dynamics. A Formulation and Proof
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It is shown that no continuous process in which the energy tensor of accreted matter remains
bounded and satisfies the weak energy condition in a neighborhood of the apparent horizon can
reduce the surface gravity of a black hole to zero within a finite advanced time. This gives a precise
expression to the third law of black-hole mechanics.

PACS numbers: 04.20.Cv, 97.60.Lf

It was only in a quantum setting, with the discovery
of the Hawking radiation in 1974, that the real mean-
ing of a black-hole "temperature'" emerged. Howev-
er, it had been noted considerably earlier' that the
classical laws of black-hole dynamics (BHD) were curi-
ously similar to those of thermodynamics, with the
area and surface gravity ~ of the horizon playing the
roles of entropy and temperature, respectively. Bar-
deen, Carter„and Hawking (BCH),3 in the most com-
plete expression of this parallelism worked out to date,
offer the third law only as an unproven and not very
precisely worded conjecture, and there is a prevailing
impression that the relatively problematical status of
this law in thermodynamics necessarily extends to
BHD. It is the object of this paper to dispel this idea.

In thermodynamics, the third law has been formu-
lated in a variety of ways. Two (essentially equiv-
alent) formulations, due to Nernst, state that (1)
isothermal reversible processes become isentropic in
the limit of zero temperature, and (2) the temperature
of a system cannot be reduced to zem in a finite
number of operations. A stronger version, due to
Planck, states the following: The entropy of any sys-
tem tends, as T 0, to an absolute constant, which
may be taken as zero.

In BHD there is no analog of Planck's version. The
formulation proposed by BCH is patterned after
Nernst's unattainability principle: "It is impossible by
any process, no matter how idealized, to reduce t~ to
zem in a finite sequence of operations. "

The status of this principle in the two theories has to
be assessed in the light of an essential difference
between them. The laws of thermodynamics, unlike
those of BHD, are independent of other macroscopic
physical laws, and cannot be deduced from them, or
fmm each other. (For example, the second law re-
quires only that reversible processes at zero tempera-
ture be adiabatic, not necessarily isentropic. ) Justifica-
tion for the thermodynamical third la~ can therefore
come only from empirical evidence or from statistical
mechanical considerations, the latter requiring a mi-
crophysical model for each system and prone to uncer-
tainties involving the enumeration of degenerate

ground states. Black-hole states, in contrast, are com-
pletely determined by macroscopic variables (their sur-
face geometry), whose evolution is governed by the
Einstein field equations. Just as the second law of
BHD finds rigorous expression in Hawking's area
theorem, 2 there is no reason why the third law should
not admit a clearcut dynamicai formulation and proof.
BCH stopped short of this step, perhaps because their
analysis was largely confined to quasistatic processes,
in terms of which it is difficult to spell out exactly what
is meant by "finite sequence of operations. " In a
dynamical context, it becomes possible to define a
"process" or "operation" as an interaction between a
black hole and its environment whose active phase oc-
cupies a finite interval of advanced time (i.e. , a finite
time in the experience of free-falling observers near
the horizon. )

Dynamical studies of spherical models ' show that
the third law can be violated if the black hole is al-
lowed to absorb material which does not have positive
energy density and a reasonable degree of smoothness
while crossing the apparent horizon. Infractions can
result from the absorption of infinitesimally thin, mas-
sive shells, which force the apparent horizon to jump
outward discontinuously; in fact, an extremal (K=0)
Reissner-Nordstrom black hole can be created outright
at a finite advanced time by implosion of an extremally
charged (~Q~ = M) hollow spherical shell. 6 Injection
of matter whose energy density is or becomes negative
in a neighborhood of the apparent horizon can violate
not only the third law, but cosmic censorship as well. 7

These counterexamples serve as useful guiding con-
straints on attempts to give a precise form to the third
la~.

Insight into the mechanism of extremization can be
gained from Fig. 1, which portrays two ways of arriv-
ing at an intermediate stage of this process for a
charged spherical black hole. In both scenarios, ab-
sorption of a (thick) shell of charged material causes
the charge-to-mass ratio ~ Q ~/M of the hole to rise con-
tinuously to a higher (but still nonextremal) value.
[The diagrams should also give a qualitative picture of
more general (nonspherical) situations, including the
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FIG. 1. Two scenarios for raising the charge-to-mass ratio of a charged spherical black hole by injection of a spherical shell

of charged material, which may fall into either of the two sectors of the region within the inner horizon. The black hole is as-

sumed to have been originally formed by collapse of the charged matter on the extreme left. In (a) the injected shell must
have negative energy density, at least while crossing the inner apparent horizon. This can be seen by noting that an outgoing
pencil of radial light rays that crosses the outgoing sheet of the inner apparent horizon changes there from converging to
diverging, whereas a positive energy density would accelerate the convergence (Raychaudhuri's equation, Ref. 11). The
dashed curve in each part represents a three-cylinder X, the rigid (r = const) extension of a trapped surface Sa situated near

the lower left-hand side of the curve. Both cylinders change their intrinsic signatures from spacelike to timelike upon crossing
the inner apparent horizon, in apparent contravention of the lemma. What breaks down is the energy condition (iii) of the
lemma in the case of (a), whereas in (b) it is the ingoing convergence condition (i).

injection of angular momentum into spinning black
holes, provided they are cut off at the Cauchy horizon,
whose compact sector is unstable to time-dependent
perturbations. s] The effect of this absorption is to in-
flate the inner horizon. If the process is continued un-
til the inner and outer horizons merge, thus squeezing
out all trapped surfaces, extremization will have been
achieved. It is evident from the figures that this can
only happen at a finite advanced time if the injected
material falls through the outgoing sheet of the inner
horizon [Fig. 1(a)] before reaching the Cauchy hor-
izon. However, as explained in the caption, this re-
quires the injected material to have negative energy
density, at least while crossing the inner apparent hor-
izon. In the alternative scenario [Fig. 1(b)], involving
influx of positive energy through the ingoing sheet of
the inner horizon, extremization is deferred until the
outer horizon meets this sheet, necessarily at infinite
advanced time.

These simple considerations suggest a general for-
mulation of the third law, which will first be stated in-

formally.
A nonextremal black hole cannot become extremal

(i.e., lose its trapped surfaces) at a finite advanced
time in any continuous process in which the stress-
energy tensor of accreted matter stays bounded and
satisfies the weak energy condition in a neighborhood
of the outer apparent horizon.

This can be restated somewhat more formally,
though inevitably the mathematical perfection of
Hawking's characterization of the second law2 cannot
be emulated, since the apparent horizon does not
share the event horizon's clean causal properties. To
facilitate such a formulation it is convenient to define
a black-hole space-time as being strongly future
asymptotically predictable in an "extended" sense if
the closure (in the conformally completed manifold)
of the domain of dependence D+ (1) of a partial Cau-
chy surface 1 contains not only &+ and a complete fu-
ture segment of the event horizon (the usual defini-
tion9), but also the outermost trapped surfaces. (For a
black hole perturbed by smooth processes that taper
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off at late times, the event and outer apparent hor-
izons will never be widely separated and will approach
each other asymptotically, so that the extension in-
volved is hardly significant. ) It is then possible9 to
foliate D+(S) by a nest of partial Cauchy surfaces
S (7 ) intersecting 2+, such that, for each positive r,
& (7 ) is a complete Cauchy surface for the portion of
D+(S) lying to its future. The (nonunique) time
function 7 thus defined globally over D+ ( S ) can be
viewed as an "advanced time" for a network of ob-
servers ringing the horizon.

The third law may now be phrased as follows. In a
strongly future asymptotically predictable black-hole
space-time, let there be a continuous process [i.e.,
g it= (C', piecewise C3) in Lichnerowicz admissible
coordinates] in which S (~) contains trapped surfaces
for all i & r~, but none for r ) rt The. n the weak en-
ergy condition is necessarily violated in a neighbor-
hood of the apparent horizon on S (r ~ ).

A simple way to establish this is to apply the follow-
ing lemma, '0 which in essence is just a convenient re-
statement of Raychaudhuri's equation. "

Lemma. —Let So be a trapped two-surface, and con-
sider an extension of So to a three-cylinder X, foliated
by two-sections S(~), which has the following proper-
ties: (i) The extension is "semirigid, " which means
that it is locally area preserving [elements of two-area
are preserved under Lie transport along the normal to
S (7 ) ], and such that ingoing light beams orthogonal to
S(~) converge; (ii) X is regular; (iii) the weak energy
condition holds on X. Then X is everywhere spacelike,
so that all subsequent two-sections S(7 ) are trapped.

This lemma was previously invoked in an attempt to
establish a property, called gravitational confinement, 8

that would permanently restrain collapsing material en-
closed within a trapped surface (which must include a
singularity) from causally influencing the environ-
ment. In the case of gravitational collapse, the regu-
larity condition (ii) constitutes a serious drawback of
the approach, since one is forced to postulate a not-
inconsiderable part of what one would really like to
prove. For application to the third law, however, this
is no longer of consequence, since, as previously not-
ed, a regularity assumption is a necessary part of the in-
put.

The third law is now an immediate consequence of
the lemma if we choose for So one of the outermost
trapped surfaces on S (rt —e). Extending So semirig-
idly to the future and assuming (iii) to hold leads at
once to the desired contradiction.
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