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We have measured the superconducting transition temperature T, (H) as a function of magnetic
field for a network of thin aluminum ~ires arranged in two quasicrystalline arrays, a Fibonacci se-
quence and the eightfold-symmetric version of a Penrose tiling. The quasicrystals have two periods
whose ratio cr is irrational and are constructed of two tiles with irrationally related areas. %e find a
series of dips in 5T, (H) corresponding to favorable arrangements of the flux lattice on the quasi-
crystalline substrate. The largest dips are found at o" and the dips approach the zero-field transi-
tion temperature as n increases.

PACS numbers: 74.60.6e, 64.70.Rh

Flux-quantization experiments on periodic arrays of
superconducting elements have shown a wealth of in-
teresting and complex structure. '2 When the magnet-
ic field is such that there is an integral number of flux
quanta per unit cell, the superconducting transition
temperature returns to its zero-field value since at
these fields each and every cell satisfies fluxoid quanti-
zation3 with no current through the filaments. For
fields less than one flux quantum per cell there are
cusps on the phase-boundary curve T, (H) at every ra-
tional field (that is, every rational fraction p/q of a
flux quantum, tahiti= hc/2e, per unit cell). This is indi-
cative of the flux lattice's finding a commensurate
configuration on the array. ~

Using cells or tiles with relatively irrational areas will
preclude the system from satisfying quantization in all
cells simultaneously. If the system possesses quasi-
periodic translational order, two or more incommensu-
rate periods, this will greatly change the ability of the
fiux lattice to find a favorable "commensurate" con-
figuration. Quasicrystalline arrays, s 6 herein taken as
quasiperiodic networks with a finite number of ele-
mentary tiles, should therefore exhibit phase bound-
aries which differ greatly from those of periodic (crys-
talline) arrays. However, quasicrystals are highly or-
dered structures, and so we would expect considerably
more structure in the phase boundary than for a ran-
dom network.

In this Letter we report on experiments on two pat-
terns that we have generated at the National Research
and Resource Facility for Submicron Structures at Cor-
nell. One pattern, Fig. 1 inset, consists of 400 parallel
lines equally spaced (2 p, m) in the y direction crossed
by 400 parallel lines arranged in a Fibonacci sequence6
in the x direction [the small spacing is 1.45 p, m and the

large spacing is 2.34 p, m, larger by a factor of r
= (%5+ 1)/2, the golden meant. The quasiperiodicity
of the Fibonacci sequence and the ratio of the number
of large to small intervals is also characterized by the
number r. The thickness of the aluminum wires is
500 A and their width is 0.30 lt, m. The resistance of
the samples is measured with a four-probe ac tech-
nique. Typically the width of the superconducting
transition as a function of temperature in zero field is
2.5 mK. The sample resistance is stabilized at a fixed
fraction of the normal-state value by use of a feedback
loop to control the temperature. The magnetic field is
then varied and the temperature variation monitored
with a calibrated Allen-Bradley resistance thermome-
ter.

The quasicrystalline patterns are intrinsically incom-
mensurate with the flux lattice for any value of the
magnetic field, in contrast to periodic patterns which
are incommensurate only for irrational fields. '~ 7 The
incommensurability is reflected in the inability of the
applied magnetic field fully to satisfy flux (rather than
fluxoid) quantization on any subset of tiles which cov-
er the system in a superlattice. One elementary way to
see the difference between the periodic and quasicrys-
talline networks is the attempt to satisfy the quantiza-
tion of the phase integral3

~t'7@ dl= J A. J dl+ J A dlc+o 4p
= 27rtt (1)

with one flux quantum through every elementary tile
(area a2) and a minimal J. By elementary tile we refer
to the smallest area enclosed by the wires in the net-
work, a unit cell for the square lattice, either of the
two rectangles from which the Fibonacci network can
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FIG. 1. Inset: Optical micrograph of a "Fibonacci pat-

tern, " parallel lines along y and a Fibonacci sequence along
x. (a) Superconducting transition temperature vs magnetic
field (after subtraction of a quadratic background). (b) Cal-
culated T, vs 0from linearized Ginzburg-Landau theory for
the pattern above. 4, is the flux through a small tile.

60

be constructed, or either the square or the rhombus
which are the building blocks of the eightfold quasi-
crystal. In Eq. (1) A is the vector potential„ & the
penetration depth, J the screening currents, n an in-

teger, and $ the phase of the superconducting order
parameter. For the square lattice one flux quantum
per square corresponds to an applied field of 4p/a~ and
indeed each tile has the appropriate field to reduce the
screening currents to zero, with the result that 5T,

0. For the Fibonacci sequence one flux quantum
in every elementary tile corresponds to an applied field
of Hp=(@p/a, 2)(1+i)/(1+v') [total flux=4p(n,
+ ni); total area= ngag + nial,

nile�=�'rg

al /ag ='r;
n, , =number of small, large tiles; a,2i = the area of a
small, large tile]. The magnetic field through neither
of the tiles is a flux quantum and the screening
currents for this situation are quite large. The kinetic
energy associated with these currents makes the pro-
posed field energetically unfavorable and 5 T, remains
large.

The measured transition temperture versus magnet-

ic field is shown in Fig. 1(a). A quadratic background
due to the finite thickness of the wires has been sub-
tracted. The pattern is clearly not periodic. To get an
idea of the correspondence between applied field and
flux per tile, we have indicated as H/Hp=1 the field
corresponding to a flux quantum in every tile. The
small dip in the phase boundary near this field is
shown in Fig. 1(a). As discussed above, this is not a
particularly favorable field. There are many cusplike
features, as in the periodic case, but not entirely at
fields which correspond to rational values of K/Hp.
Structure is also observed for H/Hp ( 1 indicating the
favorable energy of certain flux-lattice configurations
on the quasicrystalline substrate. There is also struc-
ture at H/Hp) 1 indicating that the irrational areas
can approximately satisfy fiux quantization when there
are several flux quanta in each tile.

The sharpest decreases in 5 T, occur at powers of v

times a flux quantum per tile, i.e., H/Hp = r", and 5 T,
approaches 0 more closely for larger n. Since r"=F„
+iF„+,where F„is the nth Fibonacci number, s we
see that the strongest dips correspond to the case
where successive Fibonacci numbers of flux quanta are
found in small and large tiles, approximating the ratio
of their areas, 7. If there are Nl flux quanta in every
large tile and N, flux quanta in every small tile then
the required applied field or the average field is

H(N„Nl) =+p(n, N, + nil)/(ll a&2+ nlai2)

= (Cga,') (N, +.N, )/(1+.2).

Thus H/Hp=1, r, 7, and r3 correspond to (N„Ni)
= (1, 1), (1,2), (2,3), and (3,5), respectively. (Note
that since ~ is a quadratic irrational, pcs and p/r'l be-
long to the set n+m7 where m, n, p, and q are in-
tegers. )

To treat the problem theoretically we turn to the
linearized Ginzburg-Landau equations appropriate
near the phase boundary, written for a network with
current conservation at the nodes or lattice pointss:

—A, X& cot(8») + g&h&e' " /isn(&») =0. (2)

6, is the order parameter at node i, &»= i»/g, is the
distance between nodes divided by the coherence
length, and y» =I (2e/&c)A dl. When there is only
one value which t» can take, as in square, triangular,
and hexagonal lattices, the sin(&) term cancels in the
sums and the problem reduces to that of an electron
on a similar lattice in a magnetic field. 's For a partic-
ular value of H there is a maximum value of g, f, (H),
for which there are nonzero solutions to Eq. (1).
Since g=gp(5T/T, p) 'i2, 5T= (T,p T), the super-—
conducting state is restricted to 5T/T, p & ((/gp) or
5 T, = [g, (H)/(p]2. This gives the phase boundary.

For the quasicrystalline case thc solution to these
network equations is considerably more difficult pre-
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cisely as a result of the lack of periodicity. However,
some of the structure, especially for H/Ho & 1, can be
obtained simply by solution of the Ginzburg-Landau
equations on a pair of tiles whose areas are in an irra-

tional ratio. This calculation gives a set of parabolic
dips which correspond to the cusps at 7" in the actual
data. Thus the overall behavior may be viewed as a
consequence of the irrational ratio of the areas of the
tiles. To proceed further we need to solve the network
equations on a larger grid. For the Fibonacci pattern,
it is possible to solve these equations on rather large

grids by using the periodicity in the transverse direc-
tion to introduce a Floquet variable which can be
discretely varied. 9 The results of this calculation are
shown in Fig. 1(b) for a 23 X 23 grid. The agreement
with the experiment is excellent for both the gross and
the fine structure.

The use of one periodic direction allows us to per-
form the calculation in a straightforward way. Howev-

er, it also complicates the identification of the set of
dips at different values of H/Ho. Some are due to
periodicity while others are due to quasiperiodicity.
For example, the dip at H/Ho= —,

' in Fig. 1(a) corre-

sponds to alternating rows in the periodic direction
with large tiles occupied in one row and small tiles in

the next. The deeper dip just preceding the one
marked H/Ho = 1 in Fig. 1(a) corresponds to H
= 40/a&~ =40/r a,~, the field which allows a flux quan-
tum in an individual large tile. Although it is not ap-
parent on the scale shown in the figure, an expanded
study of this region both experimental and calculated
shows that this dip is quadratic while the dips at
H=HO and most other fields are cusplike. It there-
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FIG. 2. Superconducting transition temperature vs mag-

netic field for the pattern above (after subtraction of a qua-
dratic background). Numbers, n, m, indicate the fields H
=Ho(n+ma. ), cr= 1+&2. Inset: Opticat micrograph of
an "eightfold Penrose tiling. "

fore results largely from a single-tile effect rather than
the coherence of the network. The calculated curve,
Fig. 1(b), is shown on a compressed field scale to em-
phasize another unusual property of the phase bound-
ary: the "quasireflection symmetry" about the fields
(r"+r"+))/2, extending from 0 to r"+r"+', and
becoming more nearly perfect as n increases.

The second pattern studied (Fig. 2) was the
eightfold-symmetric analog of the Penrose tilings
( —20000 elementary tiles were used). It is a two-
dimensional quasicrystal with no simple periodicity.
We were unable to produce a Penrose tiling because of
restrictions in the microfabrication apparatus. The
eightfold pattern was mathematically generated by an
inflation scheme. ' In the conventional Penrose tiling
the ratio of the areas of the tiles, the ratio of the
number of large to small tiles, and the "quasiperiodici-
ty ratio" (the ratio of basic frequencies in the diffrac-
tion pattern, or the length-scale change associated with
each inflation) are all characterized by the same irra-
tional number, r. In the present case the ratio of the
areas is &2=X, there are more small tiles than big
ones by the ratio X, while the quasiperiodicity is
characterized by a =—42+1. Note, however, that cr

and X belong to the same system of quadratic irration-
als (i.e., X is a member of n+ mo. ). The lack of
any periodic direction precludes the one-dimen-
sionalization of the network equations with a Floquet
factor.

The experimental T, (H) is shown in Fig. 2 with a
quadratic background subtracted. The apparent de-
crease of T, (H) below T, (0) for some fields is due to
the inadequacy of the quadratic subtraction for a net-
work with some variation in the width of the wires.
8 T, (H) for the two-dimensional pattern bears a great
deal of resemblance to that of the Fibonacci pattern.
In particular, there are still sharp cusps with the
greatest reduction in 5 T, found at o.", a lack of periodi-
city, and a quasisymmetry about the midpoints of the
cusps at o "and o "+'. The magnetic field which corre-
sponds to one flux quantum in each elementary tile
Ho= (1+J2)40/2a, ~ is again indicated by the arrow
and does not lie at a low value of 5T, . The applied
field for N) (N, ) flux quanta in every large (small) tile
is H(NI, N, ) = (40/2a, ~)(N)+ J2N, ). Thus the ar-
rangements of the flux quanta in the different tiles is
(N, ,N, ) =(1,1), (3,2), and (7,5) for H/H =1, a.,
and cr~, respectively. Note that for these increasingly
favorable configurations the ratios N)/N, are succes-
sive rational approximants to X (the relative areas) in a
continued-fraction expansion, again similar to the "Fi-
bonacci pattern" (where the continued-fraction expan-
sion is given by the ratio of successive Fibonacci
numbers). At low field there is structure which shows
that the flux lattice can find energetically favorable ar-
rangements on a quasicrystalline substrate. In Fig. 2
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we have also indicated some of the fields correspond-
ing to n + m o for

~ n ~, ~
m [ & 4 which describes the po-

sitions of most of the fme structure seen.
We have performed experiments on a number of

other networks which are interesting in relation to
those described above. One of the patterns consists of
equally spaced parallel lines along y and lines along x
which are spaced with either a or ra and with the same
ratio of large to small tiles as in the Fibonacci se-
quence, but with their order randomized. The phase
boundary 5T, (H) for this pattern resembles that of
the Fibonacci pattern (Fig. 1) at large fields where the
major dips occur at fields corresponding to H/Ho —r",
and at low field resembles a superposition of indepen-
dent tiles with area ratio r. The dips appear more
"quadratic" than cusplike and there is a complete lack
of fine structure particularly evident in the low-field
region H/Ho & 7. Thus the flux lattice cannot find a
favorable arrangement on the randomized pattern, but
the discreteness of the areas gives the lowering of 8 Tc
for rational approximants to an integral number of flux
quanta per cell.

Another pattern consists of equal spacing of lines
along y and a superposition of two incommensurate
periodically spaced sets of lines along x. The result is a
quasiperiodic set of tiles with a large number of dif-
ferent areas from a maximum given by the smallest
periodic spacing to a minimum of zero. The phase
boundary for this array shows cusplike structures, but
they never reduce 8 Te significantly toward zero. The
flux lines can find a configuration on the quasiperiodic
lattice which lowers the energy but the wide variety of
areas prevents any semblance of satisfying an integral
number of flux quanta per cell with low kinetic energy
from the screening currents. Hence 8 T,

'
remains large.

In conclusion we have measured the transition tem-
perature versus magnetic field for a set of quasicrystal-
line networks. We find a set of cusplike structures
reminiscent of those found in periodic systems. The
major dips are found at a "Ho (where a characterizes
the irrationality of the periods in the quasicrystal and
Ho the field for a flux quantum in each tile) rather

than at nHO (for the periodic case). The fine structure
observed at "rational fields"' (n/m)HO in the periodic
case are replaced by fme structure at (m+ na. )HO in
the quasiperiodic case. The flux lattice can find favor-
able arrangements which lower its energy even on the
incommensurate substrate. Thus there are preferred
configurations, similar to epitaxy, on a quasicrystal.
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