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Nonequilibrium Periodic Structures Induced by Rotating and Static Fields
in a Lyotropic Nematic Liquid Crystal
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Nonequilibrium periodic textures are induced by a magnetic field 0 applied to the aligned uni-
axial (negative diamagnetic anisotropy) lyotropic nematic phase of the potassium
laurate-decanol-~ater system. T~o cases are studied: a rotating field and a static field. For the
rotating field a transient one-dimensional structure results. With the static field, the appearance
and decay of a two-dimensional lattice structure is observed. In both cases the dependence of the
lattice periodicity on 0 is measured and compared to recent theories.

PACS numbers: 61.30.6d, 47.20.—k, 61.30.Eb

A body of recent work has been devoted to the
study of hydrodynamic periodic textures in liquid crys-
tals induced by magnetic reorientation of the optic axis
n. '~ A first theoretical study of the occurrence of the
textures was carried out by Guyon, Meyer, and Salan
(GMS)5 who were stimulated by the observations of
Carr. 6

The patterns are generated by application of a desta-
bilizing magnetic field to an initially uniformly aligned
sample. As the director field reorients to minimize the
magnetic energy, the coupling between elastic re-
sponse and flow fields may allow a spatially periodic
reorientation mode Sn(q, ,s, ), of wave number q, and
growth rate s(q, ), to increase faster than a homogene-
ous mode s(q -0). The patterns studied in this work
are transient, decaying on time scales characteristic of
the viscosities of the liquid crystal. When a typical
sample is observed between crossed polarizers in
transmitted light, the periodicity of the director field
generally appears as a series of parallel stripes. The
wavelength of the structure varies with applied field
and sample size, and this dependence is used to quali-
tatively identify a working theoretical model.

Recent work of the Brandeis group has primarily
concentrated on the one-dimensional reorientation
patterns in nematic suspensions of tobacco mosaic
virus2 and racemic polybenzylglutamate mixtures. '
Periodic textures have also been studied in the lyo-
tropic nematic phase of disodium chromoglycate-
water.

In this Letter, we investigate periodic textures ob-
tained in a lyotropic nematic phase of negative diamag-
netic anisotropy (&, & 0): the Wq phase of potassium
laurate (KL), 1-decanol, and D20. The simplest
model of this phase has the surfactant arranged in
discoidal micelles which through anisotropic steric and
van der Waals interactions align on the average to
form a uniaxial nematic.

Samples of the Nq phase are placed in a rotating or
static magnetic field H. The rotating samples form a
one-dimensional structure which is described by the
GMS theory. 5 With the static field aligned parallel to

the initial director, the reorientation displays a remark-
able transient one-dimensional (square lattice) periodi-
city. We believe that this is the first observation of
spontaneous two-dimensional reorientation patterns in
nematics,

The KL was prepared in the standard way. 7 Samples
of KL, 1-decanol, and D20 were mixed by magnetic
stirring in airtight culture tubes (Kimax) and allowed
to sit for at least 1-2 weeks before use. Capillary ac-
tion was used to draw samples into rectangular capil-
laries (Vitro Dynamics, New Jersey) of various sizes,
which were then carefully sealed with a torch. For
this work the sample

'
composition was KL/1-

decanollD20=26. 36/6. 24/67. 40 wt. lo—this gave an

i', phase at room temperature (19 'C).
Samples of the NL phase spontaneously align to a

uniaxial homeotropic texture (the director —optic
axis—aligns perpendicularly to the walls of a rectangu-
lar glass capillary). Uniform alignment proceeds en-
tirely by surface interaction. Apparently the polar
groups of the KL enforce a uniformly oriented first
layer next to the glass, and this supplies a surface field
strong enough to realign disturbed textures in even re-
latively thick samples ( —1 mm). A magnetic field
applied parallel to n causes realignment provided
H) H„where the threshold field H, =(K33/X, )'l
x (n/d); K33'is the bend elastic constant and d is the
sample thickness. This situation is interesting in that
it possesses a degeneracy in tilt-angle directions per-
pendicular to the optic axis.

For the first case we select a geometry which re-
moves the degeneracy by rotating the magnetic field in
the y-z plane, placing the long capillary axis parallel to
X. For simplicity we have chosen a reference frame in
which the director remains fixed and H(r) = Ho
x (0, sino, , cos~), u = cur. The rotation speeds, & = ~/
2n, were kept below the values for which centrifugal
forces caused significant flow ( = 30«pm «« = 4
mm and d=0.2 mm sample width and thickness,
respectively). A lower limit to the rotation speed for a
given H is set by &, = &~H /4~pi = 1 rpm (&& = 10
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cgs, y, = 10 P,9 H —104 G); for v significantly above
v, the director cannot follow the field and a time aver-
age may be performed. It is easy to show that in this
limit H„=2't2H„where the subscripts imply the criti-
cal fields for the Freedericksz transition in the rotating
and static cases, respectively. We set v = 120 rpm for
this study. Trials at 90 and 250 rpm did not change the
basic results.

At sufficiently high rotation speeds, for the
geometry mentioned above (translation invariance in
the y direction), the linearized nematodynamic equa-
tions for the velocity field v= (u„,0, u, ) and director
n = ( n„,0, 1) take the form

pu = —Q p+vi 8 n +v28 u

+v3t1 u„+v48 u„
pu = —8 p+vsQ n +v6$ u

+ v7 ~xaum+ "8 t)zeus

~x t)sux ~3 'Lux+ Kii ~)axnx

+K33t1 n„+-,' Ix.IH'~.

(la)

(lb)

(1c)

We further assume incompressibility, '7 v=0. Here

p is the mass density, the v, are each a certain com-
bination of Leslie coefficients n„yi is a rotational
viscosity, Kit and K33 are elastic constants for splay
and bend, respectively, and a, = a'/axi8xl, n = 8 n/8t.
The factor of —,

' in front of X, arises from the time

average of the rotating field; for the static field this
factor is absent.

Equations (1) are derived for a homeotropic
geometry; however, they are identical in form to the
Navier-Stokes and torque equations derived by GMS
for a planar geometry. The only difference is that the
v, are a different combination of the ni.

We assume the boundary conditions u, = n„
= B,u„=0 at z = 0 and d (free boundaries). Exact
solutions for rigid boundaries' indicate that, except for
a layer of large shear close to the surfaces, the free
solutions provide an adequate description of the
growth modes through the bulk of the system.

Following GMS the solutions to Eq. (1) can be writ-

ten as

has a maximum for a finite wave number (q, = 27r/A. , )
determined from Bco/Bq =0. We do not know explicit
values for the material parameters but for lt & 2.4 a
numerical solution for A. can be placed in the form

(d/Z, )'= aoH+ ai,

which permits a simple qualitative comparison with ex-
periment. The coefficients ao, ai depend upon ma-
terial parameters but are constant at a given tempera-
ture.

Figure 1 demonstrates a typical periodic texture ob-
tained in a rotating field. The wavelength A.„ofthe
transient periodic texture is presented as function of H
in Fig. 2. The limit established on the critical field is 2
kG & H„&2.5 kG. Since we could not determine H,

„

accurately, it was absorbed into the constant ao in Eq.
(1). To within experimental error we find qualitative
agreement with the theory of GMS.

The second case which considers static fields was
somewhat more surprising in its behavior under
reorientation. With H ( & H„)oriented parallel to the
director of an initially uniform homeotropic alignment
we noticed the appearance of large ( = 500 p, m) re-
gions with a remarkable two-dimensional periodicity
[Fig. 3(a)]. The lattice texture is transient, decaying in
a few hours for H=10 kG.

One- and two-dimensional patterns have been ob-
served in smectics and cholesterics; however, these
systems have broken translational symmetry allowing
an undulation instability, '0 which is in principle a static
deformation.

Upon rotation of the microscope stage one can easily
see that the lattice is composed of an array of +1

u„=uok exp(st) smqx coskz

u, = —uoq exp(st)cosqx sinkz,

n„=noexp(st)sinqx sinkz.

(2a)

(2b)

(2c)

4$ I I
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For free boundaries, the wave number k=+/d. The
wave number q =2m/A. , where & is the wavelength of
the periodic structure. Substituting Eq. (2) into Eq.
(1) we arrive at an expression for the growth rate
s = s(q, k, H), which again is identical in form to that
obtained in GMS. For sufficiently large h =H/H„s

FIG. 1. Photomicrograph of periodic texture in a rotating
sample of the N~ phase of potassium laurate-decanol-D20.
The rotation axis is perpendicular to the stripes. The polar-
izer and analyzer are parallel to the short and long edges of
the picture, respectively. The sample thickness d=0. 1 mm,
T=19'C, and the average spacing of the stripes ~ =SO
p, m. 0=10kG.
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FIG. 2. Inverse square of periodic structure vs magnetic
field. Circles and triangles denote the static and rotating
cases, respectively. Sample thickness d=200 p, m. For Eq.
(3) a0=3.5, ai= —8.3 for circles; ao=2. 1, ai= —4.9 for
triangles.

singularities. The mathematical structure of the direc-
tor field of isolated singularities in this case is well
known and was discussed some time ago by Rapini. "
Following Ref. 11 we use the term magnetic umbilics
to describe the singularities. Umbilics are dis-
tinguished from true singularities in that their core is
spread out over a characteristic length (=(5d/m)
x([H/H, ]2 —1) '~2, where 5 is a certain ratio of
Franck elastic constants.

The observed texture varies through the thickness
of the cell. When the focal plane is near the top of the
cell the brushes form a square lattice of wavelength
2A.,„.As one moves to the center of the sample Fig. 3
results. Near the bottom of the cell a transposed lat-
tice again of wavelength 2k„appears with brushes
centered on sites which are dual to the top lattice. A
sketch of a structure composed of splay-bend umbilics
of strength s = +1 is given in Fig. 3(b). If one starts
in the center of the sample with the crossed polars
oriented along the fundamental lattice directions
(wavelength h.„)and then rotates both polars or the
stage through n/4, a lattice of brushes appears with a
wavelength X„/2t~2. It is easily verified that the tex-
ture of Fig. 3(b) reproduces this property (excluding
of course nonlinearities present in the real system
which affect the intensities of the brushes). Although
the texture of Fig. 3 (b) is not unique, we found that it
can be extended into three dimensions in a simple ~ay
consistent with the above observations, unlike other
passible textures envisioned. An a priori determina-
tion of the texture might require a minimization of the
elastic energy similar to the numerical minimization
employed for textures of the blue phase. '2

The behavior of the lattice constant h. „versus mag-

FIG. 3. (a) Photomicrograph of square lattice reorienta-
tion pattern in the KL system. Focal plane is in center of
sample. Polars, same orientation as Fig. 1. Sample thick-
ness 0.2 mm, average periodicity X„=38p, m. 0=10 kG.
(b) Sketch of texture proposed for (a). Triangles and circles
are located in centers of S = —1 bend umbilics; adjacent are
5=+1 splay umbilics. The circles indicate vertices of
brushes of square lattice of periodicity 2A.

„

for focal plane in
(say) top half of sample, the triangles for bottom half. The
straight lines of (b) correspond to the brushes of (a) with
the polars oriented as in Fig. 1.

netic field H is reproduced in Fig. 2. In this case the
limits on the critical field were 1 kG (H„&1.5 kG.
We note a qualitative accord with the theoretical rela-
tion H„/H„=lti2. 8 Again among other forms avail-
able, the data followed Eq. (1) with new values of ati
and ai. The unavoidable presence of dislocations in
the square lattice resulted in relatively noisier data for
this case compared to X„,but the similarity of the data
for both the rotating and static cases indicates a prob-
able similarity in the underlying physical phenomenon.
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Although the preference of the square lattice over,
say, a triangular lattice is easily explained by topologi-
cal considerations, the appearance of the lattice indi-
cates the importance of including nonlinear terms in
the analysis [barring the possible accidental equality of
two growth rates, S (a=1,2), of perpendicular po-
larization]. Further theoretical studies are needed.

The above features are complicated by the fact that
the texture is transient, decaying within hours (H-10
kG, d =0.2 mm) through annihilation of +1, —1 um-
bilics to an unaligned planar texture with isolated +1
umbilics. The results of Fig. 2 represent direct mea-
surements of the lattice constants h.„and A.„atthe
earliest time they become observable and reproducible.

The square lattice of Fig. 3 results from the degen-
eracy of tilt directions for the optic axis. Simply tilting
the sample cell removes this degeneracy and a rec-
tangular lattice is formed with the direction of the larg-
est spacing in the tilt plane defined by Hand the sam-
ple normal. For large enough tilt (45'), weak stripes
appear parallel to the tilt plane.

A second mechanism to break the tilt degeneracy is
to use aligned biaxial samples. This possibility is being
explored.
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