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%e investigate the friction coefficient of the moving boundary. At not too low temperatures the
friction is ascribed primarily to transmission and Andreev reflection of quasiparticles; the resulting
theoretical value of the terminal velocity ~A~ is in reasonable agreement with the data of Buchanan,
Swift, and %heatley. At lower temperatures we predict a saturation of ~A~ and underdamped oscil-
lations of the pinned boundary.

PACS numbers: 67.50.Fi, 64.70.Ja

The phase transition between the A and 8 phases'2
of liquid 3He is first order, and its equilibrium tem-
perature Tztt is a strong function of pressure P and
magnetic field H. Since, moreover, the A phase super-
cools very appreciably, it should be possible to study
the structure and behavior of the A-8 phase boundary
under a wide variety of conditions. Indeed, its static
properties have been investigated both experimentally3
and theoretically. 3 6

In this Letter we outline the general physical princi-
ples which we believe govern the 4ynamics of the
phase boundary, and apply them to discuss quantita-
tively its terminal velocity in the regime investigated
by Buchanan, Swift, and Wheatley. 8 We also discuss
more briefly and qualitatively the behavior at low tem-
peratures. We hope to supply more details9 elsewhere.

Essential to our argument are the following order-
of-magnitude inequalities, which hold over almost
all of the region of interest'0: (1) The width of the
boundary, 4(T), which is4 5 a few times the tem-
perature-dependent coherence length2 g(T), is much
shorter than the mean free path I( T) of an excitation
in either bulk phase (cf. Greaves and Leggett"). (2)
The velocity of the boundary, u, is small compared to
the Fermi velocity uF (cf. Ref. 8, and below). (3) The
characteristic time associated with the motion of the
boundary, which is of order 4/v for the experiment of
Ref. 8 and of order of the reciprocal vibrational fre-
quency for the pinned boundary, may be either the re-
ciprocal vibrational frequency for the pinned bound-
ary, may be either large or small compared to the
quasiparticle collision time r( T) —I( T)/i', but is al-

ways long compared to the characteristic adjustment
time II/b, (T) of the Cooper pairs, where h(T) is the
rms gap in either bulk phase.

In general, if we consider the displacement u of a
small area of the boundary under conditions (2) and
(3), we should expect it to satisfy an equation of the
general form

M'u+I u=F
where M', I, and F are respectively the inertial mass,

friction coefficient, and external (conservative) force
per unit area of the boundary. The precise form of F
depends on the geometry and thermodynamic condi-
tions: In the case of vibrations of the pinned boundary
the main contribution to it comes from the surface
tension, while for free motion it should usually be ade-
quate to take it as the difference b, G„& of the Gibbs
free energy per unit volume at the pressure and tem-
perature of the metastable A liquid. '2

In applying formula (1) let us first consider the ex-
periments of Buchanan, Swift, and Wheatley. s We will
verify below that at the relevant temperatures the re-
laxation time M'/I' should be of order 10 9 s, so that
we would expect that in those experiments (time
scale+ 10 2 s) the boundary should move at a termi-
nal velocity ~zti given by it&tt=hG~tt/I". Thus it re-
mains only to calculate the friction coefficient I .

Let us assume that the boundary is moving (relative
to the cell walls) with velocity v (—= u) while the A

phase some distance ahead of it, say a few mean free
paths, is characterized by two-fluid fiow with normal
and superfluid velocities v„and v„respectively. We
shall initially assume that v„and v, are both zero (on
both A and 8 sides), and return later to examine this
assumption. To calculate the friction coefficient I, we
assume that the condensed Cooper pairs transform
their wave functions adiabatically as the boundary
passes and therefore contribute no frictional force
(though see below). Then the only mechanism which
can produce such a friction is the change of momen-
tum suffered by a normal quasiparticle when reflected
from, or transmitted across, the moving boundary. In
considering this effect it is essential to note that the
time spent by a typical quasiparticle in the boundary
region, which is of order 4/itF, is always short com-
pared to a typical collision time [condition (1) above],
and hence the relaxation of the transmitted or reflect-
ed quasiparticles to equilibrium takes place over-
whelmingly in the bulk A or 8 phase, where the order
parameter is not a function of position. Thus in strong
contrast to the case of (say) a moving A-phase texture
whose characteristic dimension is large compared to
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the mean free path i( T), the concept of orbital viscosi-
ty'3 is irrelevant, and the correct calculation simply
consists in working out the extra change in the total
momentum of the quasiparticle system per unit time
due to reflection from, or transmission across, the
moving boundary and setting it equal to I v.

Consider for definiteness a quasiparticle incident on
the boundary from the A side with energy E and a
wave vector k of magnitude greater than the Fermi
wave vector kF (E and k are measured in the rest
frame of the superfluid, i.e., that of the cell walls), and
in a direction specified by azimuthal and polar angles
8, Q, where 8 is measured from the inward normal n to
the boundary and qh from the common plane of n and
the characteristic orbital vector2 1. Since the A-phase

gap dz is a function of 8 and @, the quasiparticle
"kinetic energy" ek~fipF(k —kF) (i.e., the normal-
state energy of the state k relative to the Fermi ener-
gy) may be regarded as a function of E, 8, and qh:

.„(E,8,y) =+(E'- l~. (8,y) I' )'t'.

Suppose for definiteness that E is less than the isotrop-
ic 8-phase gap hs. Then the quasiparticle will, of
course, be reflected from the boundary, not by ordi-
nary but by Andreev' reflection. Consider first the
case v-0. Then the reflection process must conserve
both the component of k parallel to the boundary and
the energy E, so that the quasiparticle simply emerges
as a quasihole with kinetic energy —ez, moreover,
provided cos8 is not too small ( & b, /aF) the resulting
change in its momentum, which we label hp, is
simply —(2~&/~F cos8)n. Such a process, and the ob-
viously related ones (cf. below), give rise to a finite
force on the boundary even when v=0; it is straight-
forward to show9 that this force is just the quasiparticle
contribution to the change in free energy when the A-
8 boundary is adiabatically displaced, and it should

therefore be counted as part of the conservative force
F in Eq. (1).

Now suppose that the boundary is moving with fi-
nite velocity v. Now what must be conserved, apart
from the parallel component of k, is the energy in the
frame of the moving boundary, that is the quantity
E'= E —tk —v (+const). Expanding up to first order
in v/(vFcos8), we find that the extra momentum
change hp~'~ over and above that for the stationary
boundary is given by the expression

hp ' = [(2E/vF2) sec 8]v.

To find the frictional force due to reflection of A-
phase quasiparticles, we must multiply the total mo-
mentum change, opto'+hp'", by the flux of quasi-
particles incident on the boundary with energy in the
range dE and wave vectors in the solid angle dQ, in
tegrate over energy and (relevant) angle, and keep the
term linear in v [the resulting expression is clearly, for
each value of 8, the leading term in an expansion in
~/uFcos8) ]. The relevant flux is given by the expres-
sion

(4n)-' " f(E) " " cos8+i,

where dn/de is the (normal state) density of states (of
both spins) at the Fermi surface, ~„(E,8, $) is given
by Eq. (2), and f(E) is the Fermi function. Note that
we have explicitly assumed, here, that the incident
quasiparticle distribution is the thermal equilibrium
one in the frame of the walls (cf. below).

To obtain the total friction coefficient I we clearly
have to generalize the calculation to include (a)
quasiholes, (b) quasiparticles and quasiholes incident
from the 8 phase, and (c) the possibility of transmis-
sion across the boundary. Omitting the straightfor-
ward algebra involved, we quote the final result for I'.

I' = (2/~F) (dtt/«) „(dO/4~) lsec8l „dEEf(E) I (2 —T) [8(E—lhq (8 $) I) +8(E bs)]—
-8(E-~,,(8, &))T[.,'(E, 8, @)+.,'(E)]/..., ] (4).

Here 8(x) is the usual Heaviside step function, es is
+ (E' —b a) 't', b, ,„(8,@) is the larger of I 5& (8, @) I

and LL8, T(E,8, @) is the spin-averaged transmission
coefficient, and the angular integral goes over all solid
angle. Equation (4) is the principal quantitative result
of this paper. The right-hand side is clearly logarithmi-
cally divergent unless some lower cutoff is put on
Icos8 I. Since the approximations implicit in the calcu-
lation fail whenever Icos8I is small compared to any of
the quantities b/eF, i/go, or u/v„, we should presum-
ably take the cutoff to be of the order of the largest of
these. In the numerical calculations quoted below we
have taken it to be equal to u/~F., since the depen-

dence on the cutoff is only logarithmic and the other
two quantities are at most of order 5&&10, while
v/vF is never less than about 5 x 10 except possibly
for the last data point, the error so incurred is never
more than a factor of about 1.4 and is usually much
less.

The general order of magnitude of the quantity I,
for T- T„ is easily seen to be 52(T)(dn/de)uF ',
note that this is a factor of order (b/~F) smaller than
the "friction coefficient" we should expect if all the
atoms in the A liquid were reflected in the usual (not
Andreev) way from the moving boundary. This fact is
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crucial in the discussion of a possible finite v„and v„
to which we now turn.

If v„ is finite, then, since on the relevant time scale
the mass current is zero, v„—v, is also finite; more-
over, in general v„and v, may be different on the two
sides of the boundary. Under these conditions the
analysis is quite delicate even9 for v~ =v~, and we
shall not go into it here, merely remarking that we ex-
pect (this contribution to) the friction to vanish when
v„=v on both sides of the boundary (even if
vs„wvs~wv) and in general to be a function of
v„—v, (as is also the conservative force F) on a scale
which is likely to be not the Fermi velocity uF but
the much smaller "pair-breaking critical velocity"
u, = 2h/pF —(lL/eF) vF. (Indeed, when ~

v„—v, ~

exceeds u, the very concepts of the two-fluid model
may break down. ) Thus, prima facie, the necessary
conditions to apply the results of the above calculation,
done for v„=v, =0, should be (a) fv„f « iv), and
(b) )v„—v, ( « u, . At first sight it seems very un-
likely that these conditions, particularly (b), would be
fulfilled in a realistic experiment: Even if we exclude
the case of any substantial preexisting counterflow in
the metastable A liquid (as we shall for present pur-
poses) it appears a priori likely that the very motion of
the boundary would itself induce a v„(hence a
v„—v, ) of order at least u„ if not greater, in the
liquid ahead of it.

That this argument fails is entirely due to the
anomalously small value of the coefficient I [Eq. (4)].
Suppose we define a momentum-transfer coefficient K
between the bulk phases and the walls by P —Kv„,
where P is the momentum transferred per unit time
between the bulk A and B liquids and the walls and v„
is a typical value of the normal velocity in the bulk. A
straightforward hydrodynamic calculation9 shows that
in a tube of radius R, K is at least of order'5 qR if
R & l(T) and of order gR2/l(T) in the opposite case,
where q is the ordinary normal-fluid viscosity. Thus
the ratio of I'R2 to K is at most of order (5/eF)2, and
since these two quantities play the role of two conduc-
tances in series it follows that the smaller, I R2, totally
dominates and so the bulk normal velocity is only of
order (b/eF) v & (I/eF)u, « u, . We conclude that
provided there was no substantial two-fluid counter-
flow initially in the A phase, the expression (4) is an
excellent approximation to the actual friction on the
boundary.

In the limit of low temperature (kaT « 4a) we
can set T=O in Eq. (4) without appreciable error, and
the right-hand side is then also independent of the cut-
off provided that &o, the angle made by the 1 vector
with n, is not too close to ~/2. In fact, in this limit I'
is just equal to [2E&(T)/uF)(sec&ii~, where Eq(T) is
the thermal energy of the A phase, and thus is propor-
tional to T4 (though see below). In the region of the

experiments of Buchanan, Swift, and Wheatleys
( T/T, & 0.6), explicit evaluation of Eq. (4) requires a
knowledge of the transmission coefficient T. For
present purposes we shall make the simple Ansatz
T=8 (E—A~,„(&,@)}. With this approximation
(which will if anything underestimate I' and hence
overestimate uziti, the error decreasing with distance
from Tzq ), and the experimental values'6 of
b, Gq~(P, T) (with 0=0), we obtain the terminal velo-
city uzi of the boundary as a function of temperature;
the comparison with the (lower field) data of
Buchanan, Swift, and Wheatleys is shown in Fig. l. '7

The apparently impressive quantitative agreement of
the melting-pressure "perpendicular" curve with the
33.6-bar data may be an accident, since under the con-
ditions of the experiment one might prima facie expect
I to lie predominantly across the tube, i.e. , parallel to
the boundary (cf. Ref. 2, Sec. X): on the time scale of
the experiment there is, of course, no time for 1 to ad-
just (cf. Ref. 13). However, it is clear that both the
order of magnitude and the general trend of uzi are in
good agreement with the theory. (On the rapid upturn
of the 27-bar theoretical curve, see footnote 16.) Note
that from the point of view of the theory, the pressure
independence of the limiting slope of uqz as a function
of 4 T/Tz~ may be a numerical accident: In fact for P
close to the polycritical pressure P„we expect this
slope to vary as P —P, .

The theory developed above is appropriate to the
temperature regime of the experiment (T/T, +0.6).
However, we should expect that at the lowest tempera-
tures the terminal velocity would be limited by a quite
different mechanism, namely "pair breaking" (excita-
tion of the Cooper pairs from the "ground pair"2 to
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FIG. 1. Velocity of the phase boundary ~ —=~&~ as a func-
tion of the reduced temperature T/Tzs(P). Data points are
from Ref. 8. Full curves, theoretical results at melting pres-
sure (upper and lower curves are for 1 respectively normal
and parallel to the plane of the phase boundary). Broken
curve, theoretical result at 2'7 atm with 1 normal to bound-
ary. All curves are for H=o.
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the "excited pair" state) by the time-varying self-
consistent pair field of the moving boundary. A
straightforward order-of-magnitude calculation9 using
adiabatic perturbation theory gives at T= 0 (for
u « up and tco « b, ) a damping I (tt:to) v, where

I'(u:to) —(«/de) (5'/ up) (g/d)4(u/up)'

for the freely moving boundary (provided v )& it, and
the superfluid is at rest with respect to the walls) and
I (u:to) —(«/de) (~'/up) (A~/h)3 for the pinned os-
cillating case. Thus, for example, if we define the
quantity X=—AG„tt(P, O)/(At2t«/de) ( —10 2 at the
melting pressure in zero field), we find that the limit-

ing low-temperature value of the terminal velocity
should be of order A. t/4(d/()imp (i.e., possibly compar-
able to up itself), and should be attained at a tempera-
ture of order A. 3/'6(g/d)t/~T, ; we hope to give a more
quantitative estimate elsewhere.

We have also estimated the inertial mass of the
boundary by assuming that the "kinetic energy" asso-
ciated with the time variation of the order parameter
which its motion induces is of the same order as in
a homogeneous situation. In this way we find9
M' —a/vzp —10 tz g/cmz, where a is the surface ten-
sion. Note that this is only a fraction of order (b,/ep)z
of the total mass of the liquid in the boundary region;
this is not surprising since, when the boundary moves,
only a very small fraction of the atoms actually change
their state.

With the above estimates for M" and I', it is
straightforward to obtain a qualitative idea of the be-
havior of the boundary in many situations of experi-
mental interest. 9 For example, if the boundary is
pinned at low temperatures in an aperture of radius R
( && d), it is easy to see that the fundamental mode
will have a frequency of order upR ', and will be un-

derdamped provided ( T/T, )4 « g/R, a condition
which for reasonable R, say 100 p, m, is probably just
within the range of existing cryogenic technology.
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