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A new high-frequency and short-wavelength collective mode specific to binary liquid mixtures with
large mass difference is observed in a computer simulation of LiggPbo> and discussed within the frame-
work of the Mori-Zwanzig formalism. The mode shows linear dispersion in a wave-number regime 0.1
A~'=<¢ =<0.6 A~! but its propagation velocity is higher than the ordinary sound velocity by more than
a factor of 3. Its attenuation is only weakly g dependent in contrast to the damping of ordinary sound.
In LiggPbo.; “fast sound” entails motion of the lighter atoms only.

PACS numbers: 61.25.Mv

We report the existence of an additional propagating
collective mode in binary liquid mixtures, confined to
high frequencies and large wave numbers well beyond
the hydrodynamic regime. It can be observed in inelastic
neutron-scattering experiments or in computer simula-
tion studies of two-component systems with large atom-
ic-mass difference. Some of these systems may respond
to a high-frequency short-wavelength perturbation with
a density wave, which is supported by the light particles
alone, essentially, without the heavy particles participat-
ing in the collective motion. Since the dispersion law of
this excitation mode is much steeper in the linear region
than that of the Brillouin peak of ordinary sound, we call
the new mode “fast sound.” We have observed fast
sound in a computer simulation study' of a liquid alloy
system of 250 particles in a periodic cell modeling
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FIG. 1. Representative dynamical-structure factors SpiLi(q;
o) for g values ranging between 0.2 and 1.0 A~

LigsPbg, 2 at temperature 7=1085 K and total number
density n=0.04558 A 3.

Results for the partial dynamic structure factors

Sss'(q;0)

1 teo

v Nz (5N (q;1 )6N,(q))
T sINVg' — oo

are plotted in Figs. 1-3. N; is the particle number of
species s (Li or Pb) and 8N, (q;¢) is a density fluctuation
of wave vector q.

We observe a well-defined propagating high-frequency
excitation in the lithium density-fluctuation spectrum
which is absent in the lead spectrum. The latter consists
of a central peak with a pronounced shoulder, the disper-
sion of which roughly corresponds to the measured ordi-
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FIG. 2. Asin Fig. 1 for Spwpr(q;m).
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FIG. 3. As in Fig. 1 for SLipb(q;0).

nary sound velocity.> The positions of this shoulder and
the fast-sound dispersion are depicted in Fig. 4. The
linear region of the fast-sound dispersion extends up to
0.6 A~ and its slope corresponds to a value for the ve-
locity of propagation more than three times higher than
that of ordinary sound.

In the following we explain the origin and dispersion
properties of the new high-frequency mode. This is done
in terms of the Mori-Zwanzig formalism.*> The dynam-
ical partial structure factors of Figs. 1-3 are expressed
in terms of three correlation functions which constitute
the three independent matrix elements of the (2x2)
correlation matrix ®:
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for Imz > 0. ® is now rewritten* in terms of a restoring-
force matrix ©22(gq) and a generalized friction matrix
I'(g;z) (matrix of memory kernels)

-1
z+{=1/[z+T(g;z) 0 %(q)

The susceptibility matrix X (g) is determined by the stat-
ic partial structure factors, X (g)s = (N,N,)2S;(q)/

kgT, and the restoring-force matrix elements are given
by

Qg =q>Ny/m[X (q) "', (3)

where m; is the mass of the s particles.
In a one-component system I'(g;z ) reduces to a single
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FIG. 4. Positions of high-frequency peak in SpLi(g;w) are
denoted by dots; vertical bars indicate half-widths. Positions of
shoulders in Spppu(g;@) are marked by crosses. Dashed lines:
frequencies w;(g) and w;(q) determined from the larger and
smaller eigenvalues of Q2(q), respectively. The slope of the
full straight line corresponds to the sound velocity as estimated
from Ref. 3.

friction function I'(g;z) which vanishes as g? in the hy-
drodynamic limit, as a consequence of momentum con-
servation leading to the ordinary hydrodynamic sound
mode at Q(q)zc()?. [The correct adiabatic sound ve-
locity ¢ =co(cp/c,)'/? would result if coupling to energy
density fluctuations were properly taken into account.]

In a two-component system, momentum can be ex-
changed between the two species; only the total momen-
tum is conserved. This fact complicates evaluation of
Eq. (2) for liquid mixtures in the hydrodynamic limit,
since zI'(g;z ) is no longer negligible compared to 0 2(g)
for small q. Besides the ordinary sound mode at fre-
quency cog (again neglecting coupling to energy-density
fluctuations for simplicity) one finds a second mode of
zero frequency corresponding to the interdiffusion of
particles of the two species.

The situation may, however, simplify as the wave
number ¢ is increased beyond the hydrodynamic regime.
If one of the eigenvalues of the matrix Q2(g), say
wf(g), becomes large compared to the damping [as
characterized by the norm of zI[(g;z) taken at
z=w,(q)] for a certain g range, there will appear a
nonoverdamped high-frequency collective mode. We ar-
gue that this is exactly what happens in the case of
LiggPbo>. In Fig. 4 we have plotted the maxima of
SLiLi(g;@) against g together with the characteristic fre-
quencies ®,,(g) resulting from the eigenvalues of Q2(g)
given by

w0f2(q) =102(g) 1+ Q2(g)nl/2 £ {[Q2g) 1 — 02(g) ]2 +402(q)1,Q2(q) 2} /2, 4)

with 0#(g) = w}(g) = 0.

The Q2(g),, were evaluated according to Eq. (3) by use of static structure factors supplied by the simulation.® It is
remarkable that the dispersion of fast sound “ollows closely that of the larger eigenvalue. The strong difference be-
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tween ®; and ®; obviously is due to a Born-
Oppenheimer-type separation of time scales which re-
sults from the large mass difference. This pushes the Li
dispersion way out of the region of damping leading to
the appearance of fast sound. As opposed to the well-
known optic modes common to ionic systems, let us note
that fast sound is a propagating high-frequency mode
with nearly constant propagation velocity. In accordance
with Eq. (2) the dynamical variable

A(q) =N,(q)+alg)N,(q) (5a)

associated with the high-frequency mode is determined
by the left eigenvector belonging to the eigenvalue
0?(g). One finds

alg) = Q%g) 1/ lot(g) — Q2(g)10], (5b)

which is very small in the relevant g regime (a= —0.035
for ¢ =0.52 A~1!). So the new mode in LiggPbg, must
be interpreted as a propagating lithium density fluctua-
tion in a background of heavy lead ions, which do not
participate to an essential extent in the high-frequency
motion.

Regarding the situation at small ¢ in Fig. 4, as dis-
cussed above, one expects a central peak (interdiffusion
plus heat conduction) in addition to the ordinary sound
peak in the limit ¢ — 0. On the other hand, the frequen-
cies w2(q) vanish linearly with q. So there will be a
transition from fast sound (g=20.2 A~!) to hydro-
dynamic (g $0.05 A ~!) behavior. Theoretical predic-
tion of the spectra in this transition regime would require
detailed knowledge of the kernel matrix I'(g,z) which is
not available yet. It is not clear a priori whether the
fast-sound mode will disappear as the wave number de-
creases while the ordinary sound peak appears at still
smaller wave numbers, or alternatively, whether the
fast-sound mode will change its slope continuously in the
transition regime to merge into the ordinary Brillouin
peak without ever disappearing. This latter possibility
would be consistent with our data at the smallest wave
number ¢ =0.12 A~! attainable in the simulation be-
cause of system-size restrictions.

An application of this treatment to the liquid alloy
Nag 5K s shows that fast sound should be absent there as
in fact shown in a computer simulation.” In LiggPbg>

the fast-sound mode was not open to experimental obser-
vation in a recent neutron-scattering experiment® be-
cause it would show up at much higher frequencies than
the ones monitored. (The energy transfer was less than
5 meV in the relevant ¢ regime corresponding to fre-
quencies  <0.76x103s71)

Finally, we wish to recall that in a previous occasion
indications were found in a computer simulation study of
the existence of a higher-frequency sound in a system
characterized by two species having a large mass differ-
ence: water.” This feature never has properly been ex-
plained and it has not received further confirmation.
However, we think that, if real, it may be closely con-
nected to fast sound in binary mixtures. In spite of the
fact that the considered model of water consists of rigid
molecules, a density wave within the light hydrogen
atoms alone could be achieved by an appropriate rotation
of the molecules about the heavy-oxygen centers.
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