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Phase turbulence —a phenomenon associated with the time evolution of extended spatial
patterns —is investigated on the basis of the Kuramoto-Sivashinsky equation. The turbulent
behavior may be thought of as disorder of a primary cellular pattern and described by hydrodynam-
ic analysis of slow modes. Such an approach explains qualitatively the spatial fluctuation spectrum.
It also suggests that the ordering of the system into a linearly stable cellular state is inhibited and
the lifetime of the turbulent state grows exponentially with the size of the system. This anomalous
glasslike relaxation was observed in a numerical simulation.

PACS numbers: 47.25.—c, 05.20.—y, 05,45.+b, 47.20.TI

The formation and evolution of dynamical struc-
tures and patterns is one of the most exciting and mys-
terious areas of nonlinear phenomenology. Some of
the more familiar experimental examples include the
formation of periodic spatial patterns in Rayleigh-
Benard convection or directional solidiTication. We
are primarily interested in the large-aspect-ratio
(large number of cells) phenomena, ' as opposed to
small-aspect-ratio systems, which may be adequately
understood as dynamical systems with a few degrees of
freedom. 2 The former case poses a number of diffi-
cult questions concerning the appearance of low-

frequency noise and transition to turbulence. Many
qualitative features of the systems mentioned above
are exhibited in the temporal behavior of one-
dimensional structures described by the Kuramoto-
Sivashinsky (KS) equation. The KS equation was
derived by Kuramoto3 to describe the evolution of
propagating patterns in chemical reaction-diffusion
systems and by Sivashinsky in the study of cellular
flames. 4 We shall write it here in the scaled form:

u, + u~ + u~ + uu„= Q, (1)
where u, —= Bu/Bt, u„=—Bu/Bx, and x C [Q,L1 wtth

periodic boundary conditions. The system size L will

serve as a control parameter. The Kuramoto-
Sivashinsky equation is known to generate intrinsic
stochasticity, which has been investigated in some de-
tail. s 7 For large enough values of L, the KS equation
generates low-frequency noise5 and long-wavelength
fluctuations. 5 6 On the other hand, it also describes
cellular patterns, which have been observed in win-

dows of the control parameter.
The nontrivial behavior of the KS equation stems

from the linear instabilitiy of the laminar, u =const,
solution. The rate of growth s of a linear mode with
wave number k is s = k2 —k~, so that the long-
wavelength modes are unstable. (We are interested in
the large-system limit, L && 1.) The instability term
u balances the dissipation u on a length scale of
approximately 1: Thus one expects there to be
relevant structures on that length scale. Indeed, in a
numerical simulation, an evolving pattern (Fig. 1) ex-

hibits obvious cellular structure. The pattern is dis-
torted gently, save for the defects corresponding to
creation or annihilation of basic cells (the space-time
dislocations). This observation suggests a hydro-
dynamic description of the disorder pattern focusing
on the "slow" long-wavelength distortions of station-
ary periodic solutions. Such an approach has been
used in many applications, in particular, in the study of
the Rayleigh-Benard convection7 s and, most recently,
in the linear-stability analysis of the KS equation by
Frisch, Che, and Thual. 9 Below, by means of sym-
metry arguments, I shall derive a set of nonlinear "soft
mode" equations. Besides the linear viscoelastic
behavior found by Frisch, Che, and Thual, 9 these
equations expose a finite-amplitude instability of the
regular pattern leading to the formation of shocks in
the phase variable, which can be interpreted as space-
time dislocations.

On the basis of the hydrodynamic analysis this paper
proposes that the phase turbulence can be described as
a dynamical equilibrium of "dislocation" events and
viscoelastic phase modes. This simple picture qualita-
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FIG. l. A sequence of snapshots of the time evolution

governed by the KS equation for L =27' x9.25 taken at
6 r = 1 intervals (256 Fourier modes, time step of 0.016).
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tively explains the observed long-wavelength fluctua-
tion spectrum, predicts its dependence on L, and ex-
plains why the turbulent state does not rapidly decay
into a regular pattern, even when such a pattern is
linearly stable. The ordering is inhibited by propaga-
tion of disturbances and requires a macroscopic fluc-
tuation. The phase-turbulent state has an anomalously
long lifetime, increasing exponentially with the size of
the system. This conclusion is confirmed by a numeri-
cal study of "turbulent lifetimes" for a small-sized
system.

The possibility of similar glasslike behavior was sug-
gested by Siggia and Zippelius8 in the context of the
Rayleigh-Benard convection with free-slip boundary
conditions. The similarity of the two problems is due
to the fact that both of them possess, in addition to
translational invariance, an extra continuous sym-
metry —Galilean invariance. The latter, as was recent-
ly emphasized by Coullet and Fauve, '0 is responsible
for converting a diffusive phase mode7 into a propagat-
ing one. In realistic systems the Galilean invariance is
likely to be broken, i.e., by rigid boundary conditions.
The effect of weak symmetry breaking may be studied
in the KS equation with the conclusion that the prop-
agative nature of the phase mode at finite (but small)
wave number persists. Thus the qualitative features of
phase turbulence may be observable in a broader class
of systems.

We now proceed with the theory. The stationary
periodic" solutions of the KS equation U„(x) with
wavelength A. can be found by solving the equation

u + u„+ u2/2 —p, 2/2 = 0, (2)

obtained from Eq. (1) by dropping the time derivative
and integrating once. Assume that the average of U„
over the period, (U„), vanishes and U„(x) is odd.
Equation (2) can be solved perturbatively for
p, = ( Ui, ) « 1 or numerically. '2 The result is a con-
tinuous family of cellular solutions which can be
parametrized by wavelength A./2n ~ 1.

Let us pick a particular pattern Uz(x) with period
A. —1 and study its evolution for large L. The most
relevant distortions are identified by considering the
continuous symmetries of Eq. (1): translation, x

x+c, u u; and the Galilean transformation,
x —x —vt, u u+v. The soft modes are then the
slowly varying phase @(x, t), which is related to the
translation, and an additive mode g(x, t), representing
a weakly nonuniform Galilean transformation:

u(x, t) = Ui, (x+@(x,t))+g(x, t)+x(x;g, g) (3)

(X is a "shape" correction depending on the modes
@,(). The Galilean transformation involves a change
in phase, so that g is of the same order as 8,$ and
8 $ —e &(1. The standard multiple-scale analysis
methods'3 allow one to derive equations describing the

evolution of the soft modes.
The general form of these equations can be obtained

by further exploiting symmetry arguments. '4 Note
that Eq. (1) possesses a reflection symmetry: x —x,
u —u. Under reflection, translation, and Galilean
transformations @ behaves like x, while g behaves like
u. We then seek equations for 8,$ and Bg respecting
these symmetries in the form of polynomials in @„,(,
and their derivatives. To the third order one gets's

4t+0+H~+y4~+&4 +/3 4 4~=0,
4, +H. +v( +~4 +/3 4 4

(4a)

(4b)

The coefficients ~, a, y, and v are obtained by
multiple-scale analysis'6 and are functionals of the pri-
mary pattern Uq(x) and therefore implicit functions of
the primary wavelength &. The phase dynamics is in-
dependent of the choice of the reference state. This is
assured by a relation between linear and nonlinear
terms similar to the Ward identities:

A. do. /dh. = —P (g),
~ d~/d~ = —~(~) —P.(~). (5)

These relations are derived by noting that reference
patterns with different wavelengths are related by glo-
bal dilation x x+ Sk x (which corresponds to a mar-
ginal phase mode P=&kx) and investigating the
behavior of Eq. (4) under this transformation.

Since the existence of the Galilean symmetry has
played an essential role, it is important to understand
the effect of the breaking of this symmetry. This can
be done by investigating the effect of an additional
linear term Ku in Eq. (1). Weak symmetry breaking
(~ &( 1) introduces weak damping of the "Galilean"
mode, g. It can be analyzed in the same framework'6
and leads to the appearance of a linear term ~g in Eq.
(4b)!

Upon linearizing the soft-mode equations

yg2

-v-v/2
one obtains a dispersion relation for the growth rate s
of a linear mode with wave number k. In the presence
of a symmetry-breaking term (~e0) there are two re-
gimes. At very long wavelength, k (& K, the effect of
the symmetry breaking is essential and the soft modes
are overdampled (diffusive), si =ak, s2= —K.
However, at finite wavelength ~ &( k &( 1 the
dispersion relation is s = (n+ v) k2 +iso-~ k ~. For
a(ii. ) —=n(X)+v(A. ) & 0 and o (X) ) 0 the phase
mode is viscoelastic and the primary pattern is linearly
stable. This dispersion relation is in agreement with
the analysis of Frisch, Che, and Thual, who have
found (for K =0) that stability conditions are satisifed
for A./2m 6 [1.2, 1.3] so that linearly stable patterns of
n cells exist in the windows of L E [nii. ;„,nA. ,„].
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The linearly stable states, however, are unstable to
finite-amplitude perturbations involving dilation, since
they effectively change the wavelength of the pattern.
Consider a dilation of a region l (1(&I((L):
@=5k x for x in the region I, decaying to 0 outside.
For 5k & —P a(X) the nonlinear diffusivity, P,
term will cause the local fluctuations to see an effec-
tive 6'= a(A, ) +P 5k & 0 and will lead to an instabili-
ty. Similarly, compressions will lead to an instability
due to negative effective a ' = o +P 5 k.

The evolution of the modes beyond the instability is
determined by the nonlinear terms in Eqs. (4a) and
(4b). One can argue (and demonstrate by a direct nu-
merical simulation'6) that distortions beyond the insta-
bility threshold lead to formation of shocks in the
phase variable. While Eqs. (4a) and (4b) were derived
on the assumption that the variation of the phase is
slow, we observe that, physically, discontinuous solu-
tions for the phase $(x) are admissible, as long as the
jump in phase corresponds to an insertion or disap-
pearance of a cell: f(x ) —@(x+)= +X. Thus the
formation of a shock corresponds to a space-time
dislocation. On a length scale much larger than the
size of a cell such an event can be represented as a
delta-function source of strain @„in Eq. (4a) causing
the emission of a pair of compression ($„&0) or
rarefaction pulses propagating away from the disloca-
tion with velocity Wa. The interaction of such pulses
in turn may lead to creation or annihilation of a cell.

I propose that phase turbulence may be thought of
as a dynamic equilibrium of space-time dislocations in-
teracting with "viscoelastic" waves. Let us character-
ize the distortions of the pattern by an elastic strain en-
ergy density

pL
E = L t„dx((2+ tr$2). (7)

This energy is dissipated by "viscous" effects as long
as tz+ v & 0, which is why the ordered state has a fin-
ite domain of attraction. However, E is not conserved
in nonlinear processes such as formation or annihila-
tion of cells. If elastic strain exceeds the instability
threshold, it will cause dislocation events to occur, in-
creasing E. I conjecture that the system then finds a
disordered dynamic equilibrium state characterized by
a finite elastic energy density'7 and certain frequency
of dislocation events. Even without a more detailed
theory this simple statistical point of view has some
important implications, which we explore next.

The elastic energy is directly related to the low-k
part of the spatial fluctuation spectrum S(k)
—= ~u(k) ~, which is proportional to ~((k) [ and
~ k@(k) (2. Some of the elastic energy is in the form of
pulses emitted by dislocation events. Since the
Fourier transform of such deltalike pulses is flat, they
contribute a constant background to the fluctuation
spectrum S(k 0) =So with So proportional to the

number of dislocation events per unit time. The latter
(neglecting the correlations) is proportional to the size
of the system L and the frequency of dislocation
events. This explains the flat shoulder in the fluctua-
tion spectrums and predicts that So increases linearly
with L.

Another consequence of this picture is that the tur-
bulent state is long lived. A transition to the ordered
state requires a reduction of the rotalts elastic energy
in order to make the probability of a dislocation event
small and have the viscosity dissipate the strain. That
implies a macroscopic fluctuation and means that the
lifetime of the phase-turbulent state should increase
exponentially with the size of the system L.

These qualitative predictions can be confirmed by a
numerical simulation. The KS equation was simulated
on an FPS-164 array processor by use of the pseudo-
spectral method and an Adams-Bashforth integration
algorithm. I measured the time-averaged spatial fluc-
tuation spectrum ~ u(k) ~2 for L/2n ranging from 13 to
70 and found that So(L) is well fitted by a linear func-
tion in agreement with the theoretical argument. I
also investigated the dependence of the turbulent life-
time, r, on L for small-size systems with L lying in the
windows of stability of n-cellular solutions'9
(n =4, . . . , 10; L =2m n X1.29). The results for
ln(r) averaged over ensembles of initial conditions are
presented in Fig. 2. (The single-run lifetimes fall into
a rather broad distribution). A factor of 2 increase in
L leads to an increase in lifetime by more than two or-
ders of magnitude. The data suggest that

r = roexp(L/Lo)~

with y = 1 [other constants in Eq. (8) depend on the
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FIG. 2. Logarithm of the lifetime of the phase-turbulent

state averaged over ensembles of initial conditions as a func-
tion of system size L (L = 2n n x 1.29). Shaded are the win-
dows of linear stability of the cellular states.
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choice of L within the windowj, which is a clear indica-
tion of the expected anomalously slow relaxation.

In conclusion, the simple hydrodynamic approach
outlined above successfully captures many of the
features of the chaotic behavior exhibited by the KS
equation. This is surprising, since the detailed dynam-
ics of the KS equation with finite L exhibits all the
complexity associated with many degrees of freedom20

(e.g. , multiple attractors and sensitive dependence on
the initial conditions). However, the results of the
present paper suggest that in the statistical sense the
behavior of large systems (L ~) may allow a
simpler description.
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