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Gradient Percolation in Three Dimensions and Relation to Diffusion Fronts
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Percolation in a concentration gradient has been carried out for the cubic lattice. In contradistinction
with the two-dimensional case, the frontier of the infinite cluster extends over a macroscopic range of
concentrations. In that range almost all occupied sites belong to the frontier which has dimension three.
This defines an ideally porous material. The ratio of the local concentrations of the frontier and its
external perimeter is equal to the ratio of the local overall concentrations of occupied and empty sites.

PACS numbers: 64.60.Ak, 05.50.+q

The study of microscopic structures generated by dif-
fusion' naturally leads to the problem of lattices with a
gradient of concentration of occupied sites. This has
been revealed to be a fruitful approach to the percolation
problem. ' In previous papers, we reported simulations
of the so-called "diffusion front" on 2D lattices. This
front is a fractal object with dimension 1.75' and with
an erratic time evolution. 4 In the limit of infinite dif-
fusion times, i.e., zero concentration gradient, the front
tends to become identical to the "hull" of the infinite
percolation cluster. 's Its mean position xy tends to the
position x, where the concentration of particles is equal
to the exact percolation threshold p, . The width and the
length of the front vary as powers of the concentration
gradient at x„with exponents related to the critical ex-
ponent v of percolation. '6 On the basis of the former re-
sult, we proposed a most precise determination of p, on
2D lattices. These results have permitted us to intro-
duce the new concept of "gradient percolation, " which
we shall now apply to the 3D case, a situation of more
general interest for applications. %e show that the re-
sults are qualitatively different in 2D and in 3D.

In our 2D simulations, particles were distributed at
random on the 2D lattice (for example, a square lattice),
with monotonically decreasing concentration from 1 at
one side to 0 at the other side. In the simplest case, the
concentration p(x) is a linear function of the distance x
from the lattice row where the concentration is p l. ~

Whatever connections are considered, there exists a set
of particles linked together and to the p 1 row. This
set is obviously bounded on the low-concentration side of
the lattice. This boundary has the same definition as the
diffusion front previously mentioned.

We use the following definitions: Occupied (empty)
sites are called 3 sites (8 sites). This defines A clusters,
consisting of connected A sites (on the square lattice we
assumed that two A sites are connected if they are first
neighbors). In particular there is one "infinite A clus-
ter, " which is the set of particles linked to the p 1 side.
For the 8 sites on the square lattice we choose connec-
tions to first- and second-nearest neighbors. This corre-
sponds to matching pairs (see Ref. 8 and Fig. 1 in Ref.

2). It is well known that percolation thresholds for
matching pairs tn 2D obey pgg+pgg

Because the concentration p (x ) varies monotonically
from 0 to 1, there exist both one infinite A and one infin-
ite 8 cluster. Each infinite cluster has an external
boundary, called f~ and fq, respectively. The sites of fz
are first and second neighbors to the sites of fg and, re-
ciprocally, the sites of fq are first neighbors to sites of
fq. fq (fq) is the so-called external perimeter of the in-
finite A (infinite 8) cluster. s It is an essential property
of matching pairs in a concentration gradient that the
external boundaries of the two infinite clusters are every-
where in contact with each other. In our extension to the
3D case, we wish to keep this duality. For the cubic lat-
tice, with A connections to first nearest neighbors, one
can be convinced that complementary 8 connections are
to first, second, and third nearest neighbors. This choice
corresponds to the closest possible contact between the
two infinite clusters.

Because the connectivity is higher in 3D, both p,~ and

p,g decrease, and we have p,~+p,g & 1. Hence, for all
values of p such that p,~ ~ p ~ 1 —p,~ there exist simul-
taneously one infinite A and one infinite 8 cluster which
interpenetrate each other. This situation is very different
from the 2D case. ' In the 2D system the boundary be-
tween the infinite A and the infinite 8 clusters is located
only in a small concentration region of width oI—

~ &p ~
around p, (see Fig. 1). In contrast in the

3D systems, we can guess that the frontier will extend
over the entire part of the sample between p~ p,~ and

p2 1 pea-
It is useful to visualize such systems. In Fig. 2 we

show three pictures of a simulated sample, with 19
x 19x 19 sites: The concentration of occupied sites
(shown as elementary cubes illuminated from above) is
decreasing from bottom to top of the sample; it is equal
to 1 in the lowest plane, and equal to 0 in the highest
plane. In Fig. 2(a) we only show the six lowest planes;
the position where the concentration p of occupied sites
is equal to 1 —p,g is indicated. For p & 1 —p,g the A
sites constitute a very dense block with only a few isolat-
ed holes. For p & 1 —p,g "galleries" appear in the block,
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FIG. 1. For a square lattice, variation with the distance x to
the p 1 line of the probability density p for occupied sites (A
sites, thin straight hne), probability density P z for the occu-
pied sites connected to the p 1 line (A-infinite cluster, dotted
line), probability density py~ of the front fg (thick line). x, is
the position where the probability density of A sites is equal to
the percolation threshold p, in the square lattice.

which are connected to the infinite 8 cluster. In Fig.
2(b) the concentration in the top plane is almost equal to
the percolation threshold of the square lattice. One can
still observe a continuous path crossing the sample hor-
izontally from one side to the other. In this region the
structure of the object becomes more "aerated. " In Fig.
2(c) the concentration in the highest plane is 0.2, smaller
than p,A. Near p,A the sample should rather be regard-
ed as a system of columns and arches. Small finite A
clusters exist, which are not represented for clarity. For
concentrations smaller than p,A the system consists
essentially of finite A clusters the size of which decreases
at the top of the sample.

The results of the simulation in 30 are shown in Fig.
3(a), where we have represented simultaneously the
overall A-site concentration p (x) (thin line), the infinite
A-cluster concentration P A(x) (dots), and the concen-
tration of A sites belonging to the boundary ping(x)
(thick line). We verify that the boundary extends over a
finite concentration region, roughly p,A «p «1 —p,a.
Furthermore, one observes that (i) above p,A almost all
occupied sites (A sites) belong to the infinite A cluster,
and (ii) between 1

—p,a and p,~ the infinite A cluster is
almost identical to its boundary, so that in this whole
concentration region, practically all A sites belong to the
boundary of the infinite A cluster. This constitutes a
second basic difference with the 20 case: 'The density of
points belonging to the frontier is very close to the
overall density of occupied sites. A similar result is ob-
tained for 8 sites, as shown in Fig. 3(b).

There is a simple explanation for the fact that between

p,A and 1 —p,a, almost ail sites belong either to fA or to
fa. This may be deduced from duality considerations.

1 Pc/

FIG. 2. Picture of a 19X19&19-site system. The probabili-
ty density of occupied sites sho~n as elementary cubes is de-
creasing from 1 at the bottom of the sample to 0 at the top.
The only sites connected to the bottom p1ane are shown. (a)
The high-density part of the sample, around 1 —p,g. (b) In the
upper plane the concentration of A sites is close to the percola-
tion threshold in the square lattice. (c) The whole block of A

sites connected to the bottom plane.

&«ween p,A and 1 —p,a, far from both percolation
thresholds, most sites that do not belong to any of the
frontier are of two kinds: They belong to the bulk of one
of the infinite clusters, or they are isolated, i.e., sur-
rounded by sites of the other kind. This reduces to sites
embedded in the infinite A cluster, hence surrounded by
26 occupied sites (probability p ); and sites embedded
in the infinite 8 cluster, i.e., surrounded by 6 empty sites
[probability (1 —p) j. The total probability for these
sites, p s+(1 —p), is very small between p,~ and
1 —p,g. It reaches a minimum at a concentration p;„p
such that 6(l —pjgf) —26pjPf ~0. One fmds p;„r
=0.727 and p;2sr+(I —p;„r) =-6.65x10

Coming back to the usual percolation problem, one
has

p =I' (p ) +g,c, (p ),

where p is the probability density of occupied sites,
P (p) is the probability for a site to belong to the infin-
ite cluster, and c, (p) are the probabilities for a site to
belong to a cluster of size s. This should also hold in the
case of a concentration gradient and one can write the
same relation for the A sites:

p(x) -+ A(p(x))+g, c,~(p(x)).

Now, considering the percolation of 8 sites (i.e., with
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ph(x)/p, p(x) -p(x)/[I —p(x)], (6)

where pa(x) is the probability density of the "hull" of
the infinite cluster, and p,h(x) the probability of sur-
rounding empty sites (the external perimeter). However,
in the 3D case, relation (5) is observed in the whole con-
centration range where f~ and fg coexist.

Following the 2D results, one may wonder whether it
is possible to find a precise determination of p, . As a re-
sult of the existence of two percolation thresholds, the
concentration at the mean position xf is neither close to

p,~ nor close to 1 —p,g, and the method that we have

proposed for the 2D case ' is not applicable here. How-
ever, a determination of p, can be proposed on the basis
of the following arguments. When the gradient Vp ~ 0,
one can assume that the variation of the probability den-
sity pf~ as a function of x tends to that deduced from
P (p) in the usual percolation problem (see Fig. 4).
This suggests the following determination of p, : The
derivative deaf/dx presents two extrema which must
asymptotically tends towards p,~ and 1 —p,a. With
Vp ~z'~ and averaging on 100 samples of 64 &64x 256,
we obtain a first promising estimation: p,q~0.091 and

p,g =0.31. The present accepted values are respectively

p,a 0.097 s and p,~ 0.3117.9
The study of percolation in a concentration gradient in

3D systems has brought new results, qualitatively dif-
ferent from those obtained in 2D. The boundary be-
tween the infinite clusters consisting of occupied and

of pf near p, with a width rrf -~Vp
~

" (region b of
Fig. 4), where a v/(1+ v). '

A more striking result is that the reduced distributions
for the A- and 8-infinite cluster boundaries are identical
within statistical errors: In other words pf~(x)/p(x)
and pfa(x )/[I —p (x )] reduce to a single curve, shown

in Fig. 5, with a (p —p, )~ behavior both near p,~ and
near p,g. This leads to

pfg (x )/@fan (x ) -p (x )/[1 —p (x )1

which is very similar to the corresponding result in 2D
observed' near p, :

empty sites extends over a ~ide and finite concentration
range. Over that range, almost all occupied sites belong
to the frontier of the infinite A cluster and almost all
empty sites belong to the frontier of the infinite 8 clus-
ter. The ratio of probability densities of the frontiers of
the infinite 8 and 8 clusters remains, for any concentra-
tion p (x ), equal to the ratio p (x )/[1 —p (x )] of concen-
trations of 8 and 8 sites. Such conclusions should also
be valid in the case of diffusion fronts in 3D. Hence,
except in the vicinity of percolation thresholds, the fron-
tier is a dense object of dimension three: From this point
of view it behaves like an ordinary solid. However, any
point of that solid can be reached from the outside, i.e.,
belongs to the surface. In that sense, this system is an
ideally porous material.

The calculations have been performed at the Centre
Inter-Regional de Calcul Electronique in Orsay, France.
Laboratoire de Physique de la Matiere Condensee is
Group de Recherche No. 38 of the Centre National de la
Recherche Scientifique.
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