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An oscillatory exchange of atoms governed by the phases of the “macroscopic wave functions” be-
tween two traps containing Bose condensates, as might be realized with laser cooling and trapping, is
predicted. The discussion exploits analogs from lasers and the Josephson junction.
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Experiments on light-pressure cooling!~® of atomic
beams have recently led to the first demonstrations of
magnetic® and all-optical’ traps for neutral atoms. One
of the motivations of this effort is to achieve low enough
temperatures and high enough atomic densities so that
the effects of the statistics of the atoms, e.g., Bose con-
densation, would eventually be observed.® In this Letter
I point out that Bose condensation in such traps may
lead to a novel macroscopic quantum phenomenon analo-
gous to the Josephson junction®: When two traps con-
taining the condensates are brought close to each other,
an oscillatory exchange of particles governed by the
phases of the “macroscopic wave functions” of the two
atomic gases should result.

For the sake of concreteness I concentrate on a nonin-
teracting Bose gas of atoms with mass M and spin 0 in
an isotropic three-dimensional harmonic-oscillator poten-
tial characterized by the trapping frequency v. When
the energy of the ground state of the trap is chosen to
equal zero, the Bose-Einstein statistics gives the occupa-
tion number of the state mn=(n;,ny,n;) with energy
en=hv(n;+ny +n3) at temperature 7T in the form

Ny=[e VKD&=W _11-1 (1)

To ensure positive occupation numbers the chemical po-
tential 4 has to remain negative; hence the occupation
numbers of the states other than the lowest one (n=0)
are bounded. The total number of atoms outside the
ground state can be at most

Y Na(u=0). (2)

nynyny >0

N.=

For the quantum-gas limit k7/hv <1 this yields V. <1,
whereas in the opposite case the critical atomic number
is

N.=¢G)(kT/AV)]3, 3)

where ((3) =Y, on =1.202.1°

Bose condensation occurs when the number of atoms
N exceeds N.. No=N — N, atoms must then be packed
into the ground state. In the high-temperature limit the
density of the gas at the trap center is N (Mv?/2zkT )2,
This correctly!'! suggests that in the trap the maximum
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density of atoms at the Bose-condensation point scales
with the mass and temperature as (MkT/h?2)%2 just as
for free atoms.

An anomalously high atomic density at the center of
the trap might'! be employed as a signature of the mac-
roscopic population of the ground state,

(bgbo> =No. (4a)

However, analogously'? to laser theories'® which predict
the Poissonian photon statistics but not the coherent field
commonly used to model an ideal laser, I assume that
also the boson operators themselves acquire macroscopic
expectation values. I therefore write

(bo)=e ~*\/No, (b{)=e"/no (4b)

The (random) phase ¢ is attributed to spontaneous sym-
metry breaking.'* The expectation value of the boson
operator b serves as the order parameter when Bose con-
densation is viewed as a phase transition, much as in the
theory of the A transition of *He.!4!?

The value of the phase ¢ alone apparently has no ob-
servable consequences, no more than photon-counting
experiments can show that a single laser beam has a
phase. But two lasers can beat against each other, re-
vealing their phase difference. Analogously, I shall con-
sider the case when two traps containing Bose conden-
sates are brought close enough to exchange atoms.
When the traps are far apart their ground-state wave
functions y; and y, are degenerate; the operators that
annihilate bosons with these wave functions are denoted
by b; and b,. I assume that the interaction between the
traps is strong enough to lift the degeneracy, but too
weak to mix oscillator states that were not degenerate in-
itially. The relevant Hamiltonian for the ground state
thus reads

H/h =x(b;b}+b,b]). (5)

As expected, this Hamiltonian is diagonalized by the bo-
son operators pertaining to the even and odd superposi-
tions of the “left” and “right” wave functions, v,
=(1/v2)(y; £ y,), with corresponding energies =+ # .
The Heisenberg equations of motion for the annihila-
tion operators under the Hamiltonian (5) can be solved
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immediately. Using the counterparts of Egs. (4) for
both traps and taking the traps to be initially uncorrelat-
ed, I obtain for the ground-state population in the “left”
trap the expression

(bf ()b, (1)) =N, cos®kt + N, sin’kt
+/N|N,sin(¢; — ¢, )sin2xt.  (6)

Apart from trivial oscillations of the population between
the traps if they start out with different numbers of
atoms, there appears an interference term which is effec-
tive even if N;=N,. Oscillatory transfer of atoms be-
tween the traps under such a condition constitutes a nov-
el macroscopic quantum phenomenon.

Another angle to this result is obtained from an ele-
mentary textbook treatment of the Josephson junction. '®
Accordingly, I ascribe to the condensate a ‘“macroscopic
wave function” y such that |y(r)|? gives the particle
density, and w(r,t) obeys the time-dependent one-
particle Scrodinger equation.!” Assume that at time ¢ =0
the same number of atoms is present in both traps, and
that the total wave function is a superposition of the
isolated-trap ground states, with some phases:

w(rt=0)xle "y, (r)+e Py, (r)] 7)

The time-dependent wave equation is solved concisely by
utilization of the eigenfunctions v, ,, which leads to the
special case of Eq. (6) with N;=N,. The interference
oscillations are absent when the phase difference ¢; — ¢,
is a multiple of #, because the initial state then is an
eigenstate of the one-particle Hamiltonian and the evolu-
tion only affects the unobservable overall phase.

To estimate the time scale of the interference oscilla-
tions I calculate the energy difference between the states
v. and y, for a double-well potential which sharply
switches over between two harmonic oscillators at the
midpoint between the wells. In the limit of large trap
separation the result implies that

x=—(v/2Vr)x exp(—x ¥/4), 8)

where x =//a gives the distance between the wells / in
the units of the trap length a =(h/Mv) "2 The form of
Eq. (8) mainly reflects the overlap of the wave functions
of the two harmonic oscillators.

Although the calculations were carried out for an iso-
tropic harmonic trap, the qualitative conclusions clearly
apply to existing®” and proposed '®!® traps which are not
isotropic, some® not even harmonic. For a concrete nu-
merical example I employ the parameters of the first
all-optical trap.” The harmonic-oscillator frequency was
of the order of 2zx100 kHz, and the temperature was
about 240 uK. The criterion (3) gives for these parame-
ters N, ~ 107, so that with the present number of atoms,
~ 500, Bose condensation cannot be expected. However,
the existing traps are first demonstrations, and improve-
ments towards Bose condensation can be anticipated.

The temperature was close to the theoretical?® “quantum
limit” of optical cooling set by the linewidth of the tran-
sition, ~ A y/k, but methods to circumvent this limit are
being contemplated.?'~2* Moreover, the trapping fre-
quency in optical gradient-force traps can in principle be
increased at will by an increase of the laser intensity, at
least until multiphoton transitions and multiphoton ioni-
zation set in.

It should be recognized, though, that spin-polarized
hydrogen may be the only atomic substance that remains
a gas in thermal equilibrium at microkelvin tempera-
tures.?* In future experiments it may be worthwhile to
notice that hydrogen has an optical pumping cycle simi-
lar to sodium® which leads to a state with parallel elec-
tronic and nuclear spins, thus yielding optimal stabiliza-
tion of hydrogen against recombination. Unfortunately,
because of the short wavelength, optical cooling and
trapping of hydrogen pose an overwhelming challenge to
today’s laser techhnology.

If Bose condensation can be achieved, the next step is
to manipulate two traps close to one another. For in-
stance, with v=2x%x100 kHz and M =1 amu, the
characteristic size of the trap is @ =0.3 um and the
period of the population oscillations n/x is 1 h for / =3
um. Apart from practical difficulties, the basic physics
of electromagnetic traps imposes constraints on the con-
struction of double potential wells which may call for
new innovations. %’

The small (in many-particle standards) number of
atoms and the interactions between them constitute addi-
tional sources of possible problems, but also of interest-
ing physics. Rigorous phase transitions only emerge
when the number of particles is infinite. For trapped
atoms the thermodynamic limit can be? defined by let-
ting N — oo, v— 0 in such a way that Nv> stays con-
stant. The price paid for this procedure is that in an
ideal gas the density of the condensate tends to infinity,
too. Consequently, even minute atom-atom interactions
drastically modify,!!?"2 or perhaps obliterate,?® the
Bose condensation. If the condensation survives the
thermodynamic limit, the question as to how well the
macroscopic phase will be defined in a finite sample
should still be addressed.

Finally, description of an optical trap as a potential
well is a bold simplification. Optical cooling and trap-
ping are complicated dynamical processes which invari-
ably involve transient excitations of the internal states of
the atoms, thus distorting their indistinguishability. The
implications of the trap dynamics on the condensation
and on the macroscopic phase remain to be studied.

In summary, I have speculated about a novel macro-
scopic quantum phenomenon; oscillation of atoms be-
tween two traps containing Bose condensates. It may be
that experimental exploration of the effect has to await
laser technology capable of handling the hydrogen 1s-2p
transition frequency; but meanwhile, the implications of
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the atomic interactions and of the finite number of parti-
cles on the nature of the Bose condensation and on the
macroscopic phase, in simple trap models as well as in
realistic dynamic traps, might turn out to be of some
theoretical interest.
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