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Solution to the U(1) Problem on a Lattice
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A new resolution to the U(1) problem is proposed without direct reference to spontaneous chiral-
symmetry breaking. The parity and flavor symmetry which correspond to the neutral-pion operator are
spontaneously broken when we change the mass parameter M. Therefore the neutral pion becomes
massless at the phase-transition point where the correlation length diverges, while the q meson remains
massive. Furthermore, the charged pion becomes the Nambu-Goldstone boson in the parity- and
flavor-symmetry-breaking phase.

PACS numbers: 12.38.6c

It is important to analyze the chiral-symmetry break-
ing and the U(1) problem by a nonperturbative method:
lattice QCD. But from the beginning we face a diffi-
culty: Chiral symmetry cannot be well defined on a lat-
tice. One way to define the lattice fermion is to use the
Wilson fermion formulation which breaks chiral symme-
try explicitly. One expects that the chiral symmetry bro-
ken by the Wilson term will be restored in the continuum
limit. This is, however, a nontrivial expectation. The ef-
fective potential of the lattice Gross-Neveu model with
one bare coupling constant (that of the four-fermion in-

teraction) does not become chirally symmetric even in

the continuum limit. s The lattice CP" model does not
satisfy the PCAC (partial conservation of axial-vector
current) relation in the continuum limit. 4 We are afraid
that chiral symmetry for lattice QCD may not be re-
stored in the continuum limit.

The strong-coupling expansion or Monte Carlo simu-
lation shows that the mass parameter M ( rtttta+4;
mtt is the bare quark mass) can be chosen so as to make
the pion massless. Why does the pion become massless
without the use of chiral symmetry? The answer to this
question for the one-flavor case was considered by
Aoki, s There are two phases; one is the parity-con-
serving phase ((Iitiyslit) 0) and the other is the parity-
nonconserving phase ((yiystit)&0) Since th. e pion corre-
sponds to the operator I71iystit, it becomes massless at the
second-order phase-transition point.

For the many-flavor case we must not only explain the
masslessness of the pion but also solve the U(1) problem
at the same time, without using chiral symmetry explicit-
ly. In a previous paper I calculated trt„(ri-meson mass)
and m (tt-meson mass) in the strong-coupling expansion
of lattice QCD and obtained

in a phase where (I71iystir) 0. The underlying dynamics
which gives the mass difference was briefly mentioned
there. In this Letter I investigate this point in detail to

clarify the mechanism. The formulas, notations, and
some of the results are found in Ref. 9. The details of
the calculations will be published in a forthcoming pa-
per 10

I mainly treat the two-flavor case. The extension to
the case of an even number of flavors is straightforward,
while extension to an odd number of flavors causes prob-
lems (except one flavor). This point will be mentioned in

the end of this Letter.
I first summarize the solution to the smallness of the

pion mass and the U(l) problem for the two flavors.
(i) There is a second-order phase transition whose or-

der parameter is (I71iysr Iit) when we change the mass pa-
rameter M with g fixed:

(Iitiysr Iit) 0 for M ~ M, ,

(I71iysrstit)WO for M2 & M2,

where M,z M, (1/g2) is a critical point. The parity
(at the same time, CP) and flavor symmetry are spon-
taneously broken for M2 (Mc2. The corresponding
Nambu-Goldstone (NG) bosons are the charged pions.
Note that this vacuum expectation value is not the stan-
dard one.

(ii) The particle corresponding to the order parameter
l7tt iy5~3y, the neutral pion, becomes massless at M M, .
In other words the correlation length ( I/nt oa diverges
at M M„where e 0 is the neutral-n-meson mass.
Furthermore m 2o & 0 except M M, . Therefore z is
the massless mode associated with this phase transition
rather than an NG boson.

(111) Slllcc tllc tf (flavor slllglct) lllcsoll 1s Ilot Illlxcd
with other mesons because of the flavor symmetry,
nt„~m o in general. Furthermore, since (I71iys Ilir) is
always equal to zero, the particle corresponding to
l7Ii y5 1 y, the q meson, stays massive. Therefore,
m„&m 0 near the critical point M, . I thus claim that
the third component of the "parity-flavor symmetry"
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plays an important role in the solution of the U(1) prob-
lem. Indeed m„& m 0 for all M ~ M, in the strong-
coupling expansion.

(iv) Since the flavor symmetry is conserved,

mo=rn ~ for M ~M, .

The above results (i)-(iv) are compactly illustrated in

Fig. 1.
I try to clarify the situation by using the o model.

The field tiriysr tir (n meson) corresponds to the cr field
and piysr —lfr(x — meson) corresponds to the x field.
The cr field becomes massless at the point where the po-
tential changes to a double-well potential from a single-
well potential. The piys I y (rf meson) is a field unrelat-
ed to the o model; therefore there is no reason that this
becomes massless. "

Now I sketch the analysis. U(1V) gauge is used for
color group. I take the Wilson fermion formulation with

equal mass for each flavor. Therefore the symmetry for
the fermion action is Zq U(nI) (parity) (flavor
symmetry). Both I/N and 1/g N expansions are used to
calculate the effective action for mesons, S,ff(1/
g2%, 1/N, p(x )), where (s(x) is the meson field. I divide

Seff into two parts:

jeff jeff +jeff ~

where S;ff is a common part for both singlet and nonsin-
glet mesons and S',ff is the singlet meson part to give the
mass difference. For simplicity I use the effective poten-
tial obtained in the large-N and strong-coupling limit '

Mc
FI|Jf. 1. Dependenees of m~, m, o, and m ~, on M with g

fixed. Note that (yriy5r3y) 0 for M ~ M, and (piy5r3y)e0
for M &M, .

for S,ff.
S;ff -g„{trM(((n) —

—,
' lny(n)2++„fo(An, p)j, (1)

where

w (x ) ln [1+(1+4x ) ' 2] —(1+4x ) '

A. ,„-y(n)(P„)'y(n+i )(P „)' and P„- 1+

The leading term in the strong-coupling expansion for
Sgff has been calculated in Ref. 9,

S;ff const (1/g 2N ) 6 ( I /N ) s

NI+PZ+ * ' +PS
tr(S(n)(P„, )'(t(n+pt)(P„, )' (t(p, +. . . +p„)(P„)'

Next we calculate the vacuum expectation value and show that the phase transition occurs. Let us assume that the
vacuum expectation value has the following form:

((s(n ),'~j) =-(y(n ),'y(n )p&) o; bj (expi8J ys), ff,

where ij are the flavor indices and a,p are the spinor indices. We insert (3) into S,ff.
2

V ff S ff/4iVV g [ —,
' lncr2 —Mcr; cos8;+ 2(l —4opsin28; ) 'f2 —21n {I+ (1 —4o 2 sin 28; ) ' 2] ]

(3)

'2 '2
+3b g cr (sin 8;+2sin28;)

'
2

' 2

fb g o;. (1 ——cos48;sin228;), (4)
i 1

where V is the volume, b =,'6 (1/g N) /N, and f is the number of the diagrams which contribute to the last term of
(4). Since the last term is irrelevant for the phase transition we omit it hereafter. Gap equations derived from (4) be-
come

Mo; cos8; (i 1,2),

Sa; sin8; S—sin8;+,
&

—24bcr; (cos48;+cos28;)~ g o; (sin48J+2sin28J ) ~ 0.1+(1 —4o; sin 8;) 'f

(5)
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There are two solutions to (5):

(a) 8, - —82or (b) 8, -8,;

solution (a) has lower energy than that of (b). Indeed
solution (a) has a critical point M, 4 and solution (b)
has another critical point M, 4 —3b/64 S.olution (a)
has the same form as that of the strong-coupling limit
for one flavor

1/M forM ~M 4

l3/(16 —M )]' for M &M2

0 for M2~ M, ,

sin8~ —sin82 ' 2(4 —M2) 'i~
for M &M, .

(i6 —M') 'i'

becomes massless at M M, . Indeed for M2) M,2-4
(M' —4)(M' —i)

cosh(m oa) -cosh(m, *a)-1+
2M —3

while
(M' 4—+96r )(M' —

1
—22r )

cosh(m~ ) =1+
(i —37r )(2M' —3)

b

2048

At M M„m20 kg ~ 0 and pnz~ &0. For ~2&~,2
the NG boson must appear because the flavor symmetry
is broken:

cosh(m, *a ) 1.

Since the neutral pion is not an NG boson it becomes
massive for M2 & M,2,

This solution means

(lplysr p) 2cF~ sin8t WO,

(piys ly)-0,
for M & M,2.

2 (4 —M )(16—M )(8+M )
cosh(m, aa ) I +

15M —64M +256
The g-meson mass for M &M, is very complicated.
Therefore I do not calculate it here. Instead I consider a
simple model which clarifies the mechanism,

In other words the spontaneous breakdown of parity S' -(b/4)Q„Itry, (n))'
(CP) and flavor symmetry occurs for M2 & M,2. The
operator friy5r3y corresponds to the neutral pion which I calculate the ri-meson mass from this effective action

and Serf in (1) and obtain

(M' 4+4b )—(M' i)-
2M —3+4b

( ) ( 2) (4-M2)(16-M2) 2+2b(7M2- 16)(8+M2) 2 2

(16—M )(15 —64M +256)+16b(8+M )(7M —16'

The ri meson stays massive for all M.
The essential point of this solution to the U(1) prob-

lem is summarized as follows. The original action has
the symmetry (parity) $(flavor symmetry), while chiral
symmetry is lost. The parity and flavor symmetry are
spontaneously broken. The order parameter &friysr3y)
varies from zero to nonzero while (yriy5 Iy) stays van-

ishing when we change the parameter M with g2 fixed.
This phase transition makes the xo meson massless at the
critical point (M M, ) while the ri meson remains mas-
sive since the order parameter is (yriy5r y) rather than
(friy5 ly). Flavor symmetry also makes the x —mass-
less at M M, and it remains massless just hke a NG
boson associated with the flavor-symmetry breaking for
M' & M,'.

I finally mention some remaining problems. For
nf 1, parity is spontaneously broken for M &4 and
the vacuum has Zz degeneracy since &yiysy) - ~ crsin8.
For general nf the vacuum has (Z2) "I degeneracy if we
omit the singlet part S;rr (or b -0). Introduction of the
singlet part S;rr (or bWO) resolves the degeneracy and
the lowest-energy states of the (Z2)"f degenerate states
become true vacua. The condition for the lowest-energy

nf

g a; (sin48;+2sin28;) 0

in the first order of b. For nf 2n even it is easy to
satisfy the above condition as in the case of nf 2. But
for nf odd we cannot obtain a reasonable soiution to
(6). For example,

8) —82, 83 0

is the solution for nf =3, but this solution is problematic
since there appears a tachyon corresponding to y ipse
for small b. Therefore there must be another stable vac-
uum which does not satisfy the condition (6). It is diffi-
cult to find such a solution. I will try to solve this prob-
lern in the future.

Besides the strong-coupling expansion, the Monte Car-
lo (MC) simulations may be useful to confirm the ex-
istence of the phase transition I have mentioned. For
nf 1 such a MC simulation is now under investigation
in the quenched approximation. ' For the many-flavor
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case the analysis in this Letter suggests that the effect of
the dynamical quark loops is important to generate the
mass difference and to cause the phase transition which I
have mentioned. Therefore, careful calculation for the
quark determinant of each flavor is necessary to analyze
this phase transition in the MC simulation. In Ref. 7 I
pointed out that the complicated phase structure may ex-

ist in the weak-coupling region. It is very interesting to
analyze the phase structure in the weak-coupling region
even for the one-flavor case.
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