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Classical light-scattering studies of colloidal silica gels sho~ that they have a fractal structure for
length scales shorter than a concentration-dependent crossover length g, and behave like a collection of
nearly random}y distributed scattering centers for length scales greater than g. Our data show that g has
a power-law concentration dependence, & cue

PACS numbers: 82.70.6g, 82.70.Dd

Aggregation of many small units leading to the forma-
tion of increasingly large clusters plays an important role
in many different areas including physics, chemistry,
biology, and materials science. Following the discovery

by Forrest and Witten' that smoke-particle aggregates
can have a fractal geometry, with the density-density
correlation function g(r) exhibiting power law decay
within the aggregates, a substantial effort has been de-
voted to computer simulation of various aggregation
models. This work has shown that kinetic processes
can produce clusters having such power law correlations,
indicating that such aggregates are very likely scale in-

variant. Scattering and other experiments on aggregat-
ing silica and gold colloidss9 have shown that such
systems generate clusters with a fractal geometry and
have explored the dependence of the Hausdorff dimen-
sionality of the clusters on aggregation conditions. Both
simulation and experiment have focused on the low-

concentration limit to permit the clusters to grow as
large as possible and allow the fractal geometry to mani-
fest itself over the widest possible range of length scales.

In this Letter we present the results of classical light-
scattering studies of the aggregation of colloidal silica
for silica concentrations great enough to result in the for-
mation of ge1 networks, before the growing clusters sedi-
ment significantly. %e find that awhile the clusters are
growing, but before the gel point is reached, the static
structure factor S(q) closely resembles that observed
previously for clusters formed by slow aggregation at low

silica concentration, i.e., it exhibits power-law decay,
S(q) ~q ' —' for q(~1, and is approximately q in-

dependent for qg+1. Here g is a length scale charac-
teristic of the range of density fluctuations occurring in

the solution. As the clusters grow and ( increases, the
crossover to power-law behavior occurs at ever smaller
values of q. At some point, ho~ever, the gro~ing clus-
ters form a gel, and after this takes place very little fur-
ther evolution of S(q ) occurs. The higher the silica con-

centration, the smaller is the value of g when gelation
occurs. Consequently, the gels are characterized by a
concentration-dependent crossover length g, such that
S(q) shows power-law decay for qg&1, with nearly the
same exponent previously observed for slow aggregation,
in the dilute limit, s and for q(&l, S(q) is nearly con-
stant. These observations are consistent with the gels'
exhibiting fractal geometry on length scales smaller than

g, with that geometry apparently being characteristic of
the aggregation process that produced the clusters.

The small-q behavior of S(q) is that which would be
expected from a collection of scattering objects, each of
size f, randomly positioned in space. A similar struc-
ture factor has been observed for silica aerogel by
Schaefer and Keefer, ' using x-ray scattering, but no
other comparable measurements exist, to our knowledge.
It is tempting to identify ( with a characteristic cluster
dimension at gelation, and this simple picture is general-
ly consistent with our data for the concentration depen-
dence of g ((-c " —'). However, this picture may
be too naive since it ignores "screening" of the fluctua-
tions associated with the largest clusters by the presence
of smaller clusters w'hich may occupy much of the inter-
nal void spaces of the largest clusters.

The samples were prepared from colloidal silica
spheres 70 A in diameter (Ludox SM, graciously provid-
ed by E. I. Du Pont de Nemours 8c Co.). The stock sili-
ca solution (30 wt. % silica) was diluted directly (while
stirring) into (0.5-0.75)M NaCI solution, containing
enough HC1 to produce a final solution of the desired sil-
ica concentration in 0.45M NaC1, at pH 7.0~0.1. Un-
der these conditions aggregation occurred slowly over a
period of hours to days. The structure factors of the
solutions containing the growing aggregates were mea-
sured in situ by means of classical light scattering with
use of the apparatus described previously. " The range
of scattering wave vectors used was 0.61 pm ~q
«23.6 pm
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Figure 1 shows the typical manner in which S(q)
evolved in time, at a silica concentration of 2.4 wt. %.
Initially (r 1 h) there appeared to be a few larger par-
ticles present, yielding the peak at low q; however, the
aggregation process was independent of these aggregates,
and their scattering was soon overwhelmed by the
scattering from the aggregating colloidal particles (r «3
h). The scattering was characterized by a steadily in-

creasing value for S(q 0), coupled with a slower in-

crease in g. In a dilute solution S(q 0)/c would be
directly proportional to the weight-average molecular
weight of the growing clusters, while g would be R$/3,
where R$ is the z-averaged square of the radius of gyra-
tion. At a certain time, dependent upon concentration,
the samples became mechanically rigid as judged simply
by shaking, and S(q ) changed very little after that time,
which was -20 h for the data of Fig. l. At this point
the larger clusters, at least, ceased to diffuse, and time
averaging of the scattered intensity was not adequate to
provide accurate results. This was expected, and im-
proved statistics could be obtained by an averaging over
different spatial locations in the sample, or by an averag-
ing over different orientations of the sample relative to
the scattering wave vectors. The latter approach was
used to obtain the data shown as open circles, which are
the result of our rotating the sample continuously while
keeping the position of the scattering volume fixed.
When fitted by a Fisher-Burford approximant, '

S( ) S(q 0) (1)
[I+q g /(I+a)]'+'

these data yielded a =0.08, corresponding to S (q )
-q 2 6 for qg»1, which is close to the limiting slope
(2.08+'0.05) previously observed for clusters grown in

(g/b ) 0 22~
—l. 17 ~ O. l (2)

where b 35 A is the radius of the individual colloidal
particles. The fact that the data for g increasingly fall
below this limiting form at higher concentration is con-
sistent with the tendency for the fractal dimension df,
obtained by fitting, to increase with silica concentration,
but our data do not extend to sufficiently high q to deter-

IQ

dilute solution, under conditions of slow aggregation.
Figure 2 sho~s data obtained for gels of varying silica

concentrations, together with the results of fitting the
data by Eq. (1) (solid curves). Although there was a

slight tendency for a to increase with increasing concen-
tration, all of the data were consistent with a 0.08, and
this was imposed in obtaining the values of g, discussed
below. It is interesting to note that for the gels, S(q)
tends to fall slightly at low q, which may indicate weak
correlation between the gelling clusters. The results for

g and a were not sensitive to this, however. It is also
very noteworthy, as shown by the data for the lower con-
centrations, that S(q )/c becomes concentration indepen-
dent for q » ( '. In fact the data show scaling behavior
when plotted vs qg.

Figure 3 presents our results for g as a function of p,
the volume fraction of silica, which is related to c by

p/c+I —p, where p 2.51 is the specific gravity
of fused silica. The data for g were obtained as dis-
cussed above. The solid line is the best fit to the data for
&~10 2, where a limiting power law behavior appears
to occur. The fit is given by
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FIG. 1. The static structure factor divided by e vs the
scattering wave vector for a solution of 70-A-diam colloidal sil-
ica spheres (2.4 wt. % silica) in 0.45M NaC1 at pH 7.0, at vari-
ous times during the gelation process. Except for t l h, the
solid hnes are fits by Eq. (1), as discussed in the text. The
open circles correspond to data for the gel.

FIG. 2. The static structure factor divided by c vs the
scattering wave vector q, for gels formed of 70-A colloidal sili-
ca spheres in 0.45M NaCl at pH 7.0, for five different silica
concentrations. The solid curves are fits, as discussed in the
text. Note that S(q)lc appears to become independent of c at
high q.
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FIG. 3. The crossover length g as a function of silica volume
fraction for gels formed of 70-A silica spheres in 0.45M NaCl
at pH 7.0. The solid line is a fit to the data for &~10 2, and
corresponds to & 0.22 4

mine df accurately for the higher concentrations.
Perhaps the simplest model one might construct for

such colloidal gels would be that of a monodisperse col-
lection of clusters, each of radius R, growing until their
total volume V became equal to the container volume Vo.
At this point gelation would occur, and g would equal
RD, the cluster radius at gelation. This model is

consistent with our data for g, since it predicts
f, i.e., g-p for a fractal dimension~f ) —1.19

df 2. 16. In this model R bs I, where b is a small
1/d

characteristic length, e.g. , the radius of the individual
colloidal particles, and s is the number of particles per
cluster. For a solution containin~ ND individual colloidal
Particles, V No(4rrb /3)s r, and as s increases, a(3/d —)

value so will be reached for which V V~. At this point
R —= g bso b [Vo/(4rrb /3)No], i.e.,

(3)

which is consistent with the data.
A similar, but possibly more realistic, model would re-

lax the constraint of a monodisperse collection of clus-
ters. On the basis of our limited knowledge concerning
the actual cluster size distributions, ' ' a power law dis-
tribution of the form

n(s) -A(s)s 'f(s/s)

would appear to be the best choice. Here n(s) is the
number of clusters per unit volume, containing s col-
loidal particles, r is an exponent, presumably dependent
on aggregation conditions, and f(s/s) is a large-s cutoff,
such as e 'is. The normalization A(s) is necessary to
conserve the total number of colloidal particles No. The
total volume occupied by the clusters, again assumed to
have radii R (s ) bs f, is given by

3

S,(q) [1+q2b s ) (7)

since we are in a q range where the form factor of the in-

dividual colloidal particles is nearly unity. A collection
of clusters yields an overall intensity

1(q)~ gs2S, (q)n(s).
s 1

(8)

We have approximated the sum in Eq. (8) by an integral
and carried it out numerically for r 1.5 and df 2.08.
When we fit the results for I(q) using Eq. (1), over a
range of q values comparable to that we employ experi-
mentally, we find df 2.06 (16+qR &524), where R

1/df .=—bs ~ is the radius of a cluster having the cutoff mass.
Thus, even such power-law polydispersity should have
little effect on our experimental determination of df.
This finding appears to differ from that of Martin and
Ackerson's who found p df(3 —r), where p is the ap-
parent fractal dimension which should be seen experi-
mentally. Apparently, they only meant to consider the
case z ) 2, and their result does not hold' for r (2. It
is ~orth noting that the presence of small clusters can
have the effect of reducing the slope with which S(q)
falls off at large q, but could never increase it, as a naive
use of their result might suggest.

Although such models may be appealing in their sim-

plicity, it is not necessary to make such specific assump-
tions in predicting the dependence of ( on p. If the gels
have a unique fractal dimension for length scales below

g, then the mass m~ of silica in a volume g is proportion-
al to Pf. The total number of such independent volumes
in a system of volume Vo is Vo/g, for a total silica mass
M-m~Vn/g3- Vnf f . Thus p-M/Vo-g I, as
found for the simple models discussed above. Although

The measured length scale for the solution of growing
clusters (assumed to be spatially uncorrelated) is given

by

R'(s)-b'gs I+' 'f(s/s)/gs' 'f(s/s) (6)
s 1

For an exponential cutoff the various sums can be ap-
proximated by incomplete gamma functions, enabling
one to obtain analytic results.

For s & 2, the sums, including that expressing mass
conservation, are dominated by the upper cutoff s, and
one obtains the same concentration dependence for ( as
found above for the monodisperse case. Since r=1.5
has been observed recently'3 for the slow aggregation of
colloidal gold particles, it seems that polydispersity
would not seriously affect the predicted concentration
dependence of (.

In order to be consistent we examined the effect such
a power-law distribution would have on the determina-
tion of df, assuming no spatial correlation between indi-
vidual clusters. We consider a cluster of s particles to
have a structure factor
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we cannot rule them out directly, we feel that they may
be too naive because they do not recognize that in a con-
centrated colloidal solution undergoing aggregation in

the reaction-limited regime small clusters would be very
likely to be found in the void spaces of larger clusters,
and this would result in "screening" of the fluctuations
associated with the overall cluster size in dilute solution.
In this case g, rather than reflecting cluster radius,
would actually be a screening length, analogous to the
correlation length in semidilute polymer solutions. Such
an interpretation would be consistent with our data, and
would raise the interesting question of the relationship, if
any, between g and the distribution and sizes of void

spaces in the gel.
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