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Supersymmetric Treatment of Random Disorder in the Continuum Model of Polyaeetylene
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%e employ a supersymmetric functional-integral formalism based on the method of Bohr and Efetov
to study the influence of both "site" and "bond" disorder on the nature of the ground state of the contin-
uum model of polyaceteylene. We find exact results for the electronic density of states and the ampli-
tude of the Peierls dimerization as functions of the strength of the disorder. As the disorder is increased,
the dimerization amplitude decreases to zero continuously for bond disorder and discontinuously for site
disorder.

PACS numbers: 72.80.Le, 61.41.+e, 71.55.Jv, 72.15.Nj

The extent to which random (impurity) disorder influ-

ences the electronic properties of the soliton-bearing'

polymer polyacetylene has been the subject of several in-

vestigations. " " In all of these investigations, certain as-
sumptions and/or approximations had to be made which

unfortunately limit the usefulness or range of validity of
the results, and as a consequence no general conclusions
could be drawn. Of central importance to soliton ex-
istence and behavior in polyacetylene is the extent to
which the introduction of random disorder (for example,
a random distribution of impurities) influences the na-

ture of the Peierls dimerized ground state. ' In this
Letter we report exact results for the dependence of the
electronic density of states and dimerization amplitude
on the strength of random disorder introduced either in

(i) the hopping matrix element connecting the tight-
binding electronic orbitals on neighboring (CH) groups
("bond" or "off-diagonal" disorder), such as might arise,
for example, from imperfections in the spacing between

neighbors, or in (ii) the on-site electronic energy ("site"
or "diagonal" disorder), such as might arise from substi-

tutional impurities.
Our results are obtained with an adaptation of the su-

persymmetry method'3 used by Bohr and Efetov'4 to
treat the case of random disorder in a one-dimensional
free-electron model. With this method one is able to
average over the disorder at an early stage in the calcula-
tion and arrive at an effective-field theory involving the
original fermion fields and a set of auxiliary boson fields
which enter the effective Lagrangian in a supersym-
metric fashion. This Lagrangian can be analyzed by a
transfer-operator method to obtain the averaged density
of states as well as correlation functions of interest. We
refer the reader to Refs. 13-15 for details of the super-
symmetry method and its application to one-dimensional
systems. Here we only sketch the broad outlines of the
method as it applies to polyacetylene and postpone the
details to a more complete paper. 's

Our starting point is the continuum model of the elec-
tronic properties of a polyacetylene chain introduced by
Takayama, Lin-Liu, and Maki' (TLM). The Hamil-
tonians for the two types of disorder are given by (when
we set UF 1 in the TLM model)

H =
2 (tog/g)~„"dxh2(x)+& dx +t(x)i icr (a3/—a )+x(I+a2)b, U, ( )+xi'(x)+bbUb(x)/otje(x),

where cog is the maximum phonon frequency in the
discrete-lattice model of Su, Schrieffer, and Heeger'
(SSH), g is a scaled electron-phonon coupling constant,
and h(x) is proportional to the amplitude of the dimeri-
zation which is regarded as a static, classical field in the
TLM model. The parameter pair (8„bb) (1,0) for site
disorder or (0, 1) for bond disorder, the Ia;j are Pauli
matrices, and W(x) is a two-component pseudospinor
field composed of right- and left-moving electron fields,
u(x) and t (x). The uniform dimerized Peierls state is

characterized by a constant value of 6, and we shall re-
gard h, as a constant in what follows. The extension to
the case of a spatially varying dimerization amplitude,
such as occurs when a soliton is present, will be treated
in a subsequent paper. The bond-disorder potential,

Ub(x), is assumed to be randomly distributed with zero
average and to obey a Gaussian b-correlation law,
(Ub(x)Ub(x')) ebb(x —x'). The site-disorder poten-
tial, U, (x), is also assumed to be b correlated with

strength y„but having nonzero mean, (U, (x)) Uo. In
actual samples of polyacetylene, one would expect that
both bond and site disorder, as well as more complicated
disorder, may be present simultaneously. Thus, we must
regard the disorder cases discussed here as the simplest
limiting cases which nevertheless provide benchmarks for
more realistic (but likely only approximate) treatments.

The averaged density of states can be expressed' as
(p(E)) tr '(ImGn(x, x;E )), where the retarded
Green's function can be formally written in terms of the
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(unknown) eigenfunctions [pk} and eigenvalues [Ek} of the full Hamiltonian as

G"(x,x';E) -g . -gyk(x)yk(x')G~(k;E),yk (x)yk (x')
E —Ek+iB

where G~(k;E ) is represented' as a function integral over supervectors 4k = (s):

G (k;E) —i „d4k d@k@,k@tkexp[i@j[E Ek—+ib}@k].

(2)

(3)

In Eq. (3) the subscript a takes either of two values which indicate the fermionic (X) or bosonic (S) components of @k
(each of the components X and S is itself a two-component vector containing "right- and left-moving" fields so that the
superfield 4k is a four-component object).

The averaging over the disorder can now be done' with the result that the average of the retarded Green's function
can be written in terms of an effective Lagrangian' involving superfields alone, and the remaining functional integra-
tions may be performed with the aid of a transfer-integral operator technique, ' which leads to an effective Schrodinger
problem involving the following supersymmetric Hamiltonian for the two cases (i s,b):

(4)

At (z')At(z') +Bt (z')Bt(z')

where z; =P; 3[8z —Ez+ 2b, UoE ] and Ai(z; ) and
Bi(z;) are Airy functions's of the first and second kinds,
respectively. These results are very similar to that ob-
tained some time ago by Halperin'9 for the one-dimen-
sional free-electron gas in the presence of disorder.

The density of states given by Eq. (5) depends on the
dimerization amplitude (order parameter), d, , which
remains to be determined. This is accomplished by
minimization of the total averaged energy with respect to
5 with due regard given'5 to the fact that the cutoff'6 re-
quired for the electronic energy spectrum in the TLM
model now depends on d, and the disorder strength y; be-
cause of the altered density of states and the requirement
that the total number of electrons to be accomodated is
the same' as in the valence band of the unperturbed
TLM model. In Ref. 15 we give the details of this
straightforward procedure which involves a numerical
search for the value of 6 which satisfies both require-
ments.

In Fig. 1 we present the results for 6 as a function of
increasing disorder for representative values of the di-
mensionless electron-phonon coupling constant' X,. Note
that for the bond-disorder case 5 decreases in a continu-
ous manner along an almost BCS-like curve until a criti-
cal value yb,, is reached above which the dimerization
amplitude is identically zero implying the destruction of
the Peierls state. As yb approaches yb, from belo~ we
find that the dimerization decreases as & [(yb, —

yt )/
2]' . For the site disorder case the formalism above was
carried out with y, and Uo treated as general inde-
pendent parameters, but for the purpose of plotting

(5)

representative results we consider the specific simple
case of attractive b-function impurities with average
strength ~o and concentration c. Then Uo —can and

y, ex). Fixing tro (we choose xo 1) then leaves the
concentration as the variable parameter determining the
"strength" of the site disorder. Note that there is a
discontinuous drop of b, to zero at a critical value of con-
centration c,. This discontinuity results from the ex-
istence of two branches of solutions for the energy
minimization problem, one of which is a "metastable"
minimum corresponding to 6 0 which becomes lower in

energy than the finite-h, solution when the concentration
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FIG. 1. Dimensionless dimerization amplitude 6 as a func-
tion of disorder strength yb for bond disorder [curves a and b]
and of concentration c for site disorder [curves e and d] for two
values of the electron-phonon coupling X.

H; ——' + +p(d —E +28,UoE)4'4+P;(@ 4),a' a'
p 8S' t|S 8X' 8X

where pb =—2hzyt, +yg/2, p, =2E y, . We note here that 4'4 ([S ( + [X) ). The averaged density of electronic
states is obtained from the imaginary part of the Green's function as noted above. This in turn can be expressed in

terms of the analytically continued (p i) ground-state eigenfunction'3 '5 of H~ to yield exact results for the two
cases (i s,b):
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exceeds the critical value. This behavior is similar to
that obtained by Gomez-Santos and Yndurain" using a
single-impurity approximation for the discrete-lattice
SSH model' in the presence of substitutional impurities.

In the top panel of Fig. 2 ~e plot the dimensionless
density of states per unit length for several bond-disorder
strengths. Note that for small values of yb there exists a
"pseudogap" in the density of states, while for larger
values there is a significant density of states in the ener-

gy region where a gap would exist [curve (a)1 in the
pristine Peierls state; curve (d) represents the situation
where yb ) yb, and the dimerization order parameter 6
has vanished. There is an exact zero in the density of
states at E 0 for all values of yb. This is a conse-
quence ' of the facts that the disorder function, Ub(x), is

symmetrically distributed about zero and that its "off;
diagonal" presence does not destroy the electron-hole
symmetry3 possessed by the TLM Hamiltonian. We also
note that the local maxima appearing as remnants of the
square-root divergences in the pure system are gradually
suppressed as yb is increased and they disappear alto-
gether for yb & yb, .

In the bottom panel of Fig. 2 we plot the dimensionless
density of states per unit length for the site-disorder
case. Its "diagonal" presence in the Hamiltonian (1)
shifts the energy spectrum to the left because of the neg-
ative mean value of the disorder function U, (x) [see
above]. Note that for c &c, a power-law divergence

(p, -E ~/3) occurs as E 0 is approached from above,
followed by a very rapid exponential drop just below
E 0 to a very small value. A peak occurs between this
minimum and an exact zero [due to the assumed sym-
metric distribution of U, (x) about its mean] at lower

energy.
In Fig. 3 we plot the dependence of the critical disor-

der parameters, yb, and c„on the dimensionless
electron-phonon coupling constant, A, . The numerical re-
sults for yb, are very well fitted by the expression

yb,, (0.154 —0.43$.) exp[ —3/4A, ] for small A, . In fact,
the exponential dependence agrees precisely with the be-
havior obtained from a smal]4 (small-yb) analysis based
on the asymptotic properties' of the Airy functions ap-
pearing in Eq. (5). For k values larger than about 0.2
there are significant corrections as can be seen in the in-

set of Fig. 3 where we plot —lnyb, vs I/A. . We have not
succeeded in obtaining an approximate analytic expres-
sion for the site-disorder case, because of the discontinu-
ous behavior which precludes a small-d, analysis.

Much remains to be done before detailed comparisons
with experiment will be possible. A promising approach
would involve the controlled introduction of disorder via

substitutional impurities and subsequent measurement of
quantities3 which are sensitive to the density of states,
such as optical absorption, photoconductivity, etc. If re-
liable estimates of the average impurity-potential
strength can be made, then at least a crude comparison
with the theoretical results reported here may be at-
tempted. On the theoretical front, more realistic types'
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FIG. 2. Dimensionless density of electronic states per unit

length (with A. 0.19). Top panel: (pb(E)) =(pb(E))/L for
several bond-disorder strengths: curve a, yb 0.0 [6 0.7];
curve b, yb 0.1224 [5 0.65]; curve c, y& 0.4604 [6 0.5];
aud curve d, yb 1.204 [A 0.0]. Bottom panel: (p, (E))
=(p, (E))/L for three site-disorder (impurity) concentrations c.
Curve a, c 0.0 [5 0.7]; curve b, c 0.096 [6 0.431; and
curve c, c 0.55 [6 0.0].

0.0 0.05 0.10 0.)5

FIG. 3. Dimensionless critical strength yb, for bond disor-
der and critical impurity concentration c, for site disorder as a
function of the dimensionless electron-phonon coupling con-
stant X. Inset: —lnyb, , vs (1/X).
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of disorder need to be considered as discussed above and

three-dimensional effects3 will need to be incorporated.
Our results should provide useful starting points for
these efforts.

Clearly the destruction of the Peierls dirnerized state
for disorder strengths above the critical values would ap-
pear to preclude the existence of solitons which serve as
"domain walls" between the two equivalent dimerized
ground states in the pristine model. Below criticality,
however, the dimerized state still exists and so, therefore,
should solitons. Several interesting questions then arise,
including (i) the nature of the localized mid-gap elec-
tronic state' associated with the soliton fpresumably this
state gives a smeared peak (for low disorder) rather than
a delta function in the density of states], (ii) whether the
soliton helps or hinders the stability of the Peierls state
when the disorder is nearly critical, and (iii) the manner
in which the disorder influences the signature of soliton
states in response properties such as optical absorption,
These and other questions are currently under investiga-
tion using a supersymmetric effective Lagrangian which
incorporates the spatial variation of the dimerization
amplitude.

We wish to thank Dr. J. S. Zmuidzinas for bringing
the work of Efetov's to our attention and for helpful
discussions.
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