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A spherical model of Ising spins, placed on sites that are arranged in a cluster hierarchy, is studied.
For the ferromagnetic transition, the critical exponents are found to have nonuniversal values in a cer-
tain range of system parameters, while they assume classical values in another range. Correlation func-
tions show a behavior which is very different from the uniform systems. For antiferromagnetic interac-
tions, the system has no transition, which is related to the fact that condensation cannot occur in local-

ized modes.

PACS numbers: 75.40.Bw, 05.70.Fh, 05.70.Jk, 64.60.Fr

It has been realized by many workers that hierarchical
organization is an important characteristic of many com-
plex systems.'=3 The discovery of hierarchical structur-
ing of the pure states of an infinite-ranged spin-glass
model by Mezard et al.% has played a significant role in
this realization. Recently, hierarchical models have been
used to obtain interesting insights into relaxational dy-
namics of glassy systems. 71!

In view of the important role that hierarchy might
play for complex systems, we study the question of mode
condensation in a system with hierarchical architecture.
We consider an Ising model in which the spin sites are
arranged in a cluster hierarchy, which is exhibited by a
Cayley tree as shown in Fig. 1. The spin sites are distri-
buted in clusters of o sites each, and these clusters are
grouped into superclusters of o clusters each and so on.
The spins interact according to the Hamiltonian

N
H=“'l— Z J,'jSiSj, (1)

2 5=
where the S;’s are Ising spins, NV =0” is the total number
of sites in the system, and » is the number of cluster gen-
erations. The interaction matrix J;; =J;, where / is the
ultrametric distance®’ between sites i and j. The main
motivation to study this model comes from the fact that
the eigenspectrum of the matrix J is very different from
that of a homogeneous system, in the sense that the lo-
calization of its modes ranges from unit ultrametric dis-
tance to a distance that covers all the sites in the sys-

IREEEAEE R ART AN Y

\
\
\
\
FIG. 1. A part of the Cayley tree, depicting the hierarchical
clustering of spin sites. The spin arrangement shows a possible

ground state for antiferromagnetic interactions.

tem.”!! At the localized end of the spectrum, the eigen-
values are well spaced, becoming denser and denser as
one moves towards more extended modes. By choosing
the signs of the J;’s appropriately, one can either make
the “extended end” of the spectrum more favorable for
condensation or make the “localized end” so.

Since the branch-point singularity in the mode density
at the extended end is quite different from that of uni-
form systems, one expects a very different type of critical
behavior. If, on the other hand, the localized end of the
spectrum is more favorable for condensation, another in-
teresting point presents itself. Macroscopic condensation
cannot occur in localized modes, as a thermodynamic
transition must involve all the degrees of freedom in the
system together.!? For systems possessing both localized
and extended modes, Hertz, Fleishman, and Anderson
showed, by use of the Hartree-Fock approximation, how
condensation in localized modes is averted by a renor-
malization of staggered susceptibility in these modes.'?
Though the present model does not possess all the in-
teresting features concerning this point, it does offer an
alternative mathematical rationale for the Hertz-
Fleishman-Anderson result.'4

To study the statistical mechanics of the above system,
we use the spherical model approximation of Berlin and
Kac.!” This approach seems particularly useful in the
present context, as it makes the connection between the
eigenspectrum of the interaction matrix and the mode
condensation and associated critical behavior quite trans-
parent. In the spherical model, the partition function Z
can be written as'>

- / sotice ds _ 1 N _ ﬁ.ua
z erzfs(’_im—;exp Ns —Z—len s
—

2)

where the u,’s denote the eigenvalues of the matrix J,
B=(kgT) ™!, and s¢ is a real number greater than the
largest value of Bu,/2. To proceed further, we briefly re-
call the main characteristics of the eigenvalue spectrum
of J.”!!' For an n-generation tree, J has n+ 1 distinct ei-
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genvalues u,,, which, along with their degeneracies dp,
are given by

m—1 .
pm=k ¥, Jjo! "' =Jma™ !,
j=1
dm=ko" " "=Nk/c™, m=1,...,n; 3)
i j —
1=k X J;0' 7!, dpyi=1,
j=1

where k =0 —1. The eigenmodes also follow a cluster
hierarchy. The first-generation, m =1, modes are con-
fined to clusters of o sites, each such cluster having o — 1
modes. The next-generation, m =2, modes!® occur in o
clusters of o sites each, and can be thought of as occur-
ring on supersites obtained by the condensation of o sites
into one supersite as on the second row of the Cayley
tree. The m =3 modes can be thought of as occurring

on single clusters on the third row of the tree, each site
of which is obtained by condensation of o sites. The
process is continued till one is left with a single cluster
which has o modes.

We shall now consider a specific ferromagnetic model
in which J; =Jr'~!. Then

Am=pm/J =lk —(6—¢q)q™ '1/(1—q)
=A—2bg™"!, m=1,...,n; (4)
An+1=Un+1/T =ro(1 —g™),

where ¢ =or. The model makes sense only for ¢ < 1, as
otherwise the spectrum of J would be unbounded in the
N-— o limit. For g <1, the mode density has a
branch-point singularity at A, which is the highest ei-
genvalue in the limit n — oo,

Writing K =pJ, s =Kz, and zp=s5¢/K, we write Eq.
(2) as

N/2
zgtioe
z=- [—1’?] Ko BiG = he) T PexpiN Kz ~ $g 1, s)
where
n_ . e where a, =kq?/b(oq?—1). The singularity would now
gz)=k Zlc’ In(z = 3Ao+bg™ ). (6) come from the above sum if og® < 1. So in the range
-

In the thermodynamic limit, the integral is done by the
saddle-point method.'® The saddle point z, is given by

K =E 5 57m(z, —Lho+bg™ )
m=0

According to this equation, as K increases z; moves to
the left on the real axis. In order to have a phase transi-
tion g'(z;) must have a finite value when z;— A¢/2 from
above.!’ This requires that go > 1, which restricts g to
the range 6! <g <1. The transition temperature is
given by the equation

2K, =g'(510) =kq/b(ogq —1). (€))
To work out the nature of singularity of g(z) at
z =Ao/2, we put z; =(z; —Ao/2)/b, and write

k2,

=L S (o) " +g™ L ©)

m=0

g ) =g'(+10) —

The second term in Eq. (9) is singular if the above sum
diverges for z, =0, which happens if og?><1. In this
case, to leading order in z,, g'(z) is

g(z)=2K.—A;z0'+ ..., (10)

where t;=In(go)/|Ing| and A,=k/lob |Ing |sinz(1
—1t)]. Note that 7;<1, as a result of the condition
0q*<1. On the other hand, if og>> 1 one has to ex-
press g'(z) as

kzt

2L S (0g) e +g™

m=0

g'(z)=2K,—az,+
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0'"/2<q <o
g(z)=2K, —a\z;+ Az T4 (1)

In general, if 677 < g < o~ V/P+D the lcadin% singular
term of g'(z) is of the form z{¥%' where
tp=In(og?)/|Ing|. AIll the 1,’s are less than unity.
This establishes that in the range 6~ ! < ¢ <1, g'(z) has
a branch-point singularity and finite value at Ao/2. This
means that for temperatures K > K., the saddle point
sticks to Ao/2, signifying the phase transition.!> For
g < o}, there is no transition.

We can now evaluate the thermodynamic functions
and the critical singularities of the response functions.
The expressions for specific heat ¢ and the susceptibility
X (per site for each of these quantities) are

12)

=/ )(z,—2e/2),” T>T,, (13)

The temperature dependences of these quantities depend
upon the value of g. We first discuss the range 6~ ! <g¢
< 672 in which range g'(z) is given by Eq. (10). For
K SK., z < (K, —K)"" and

g(zs) =g (ho/2) +2bK 2\ — Ajz T+ ..

From these expressions, the specific-heat exponent a,
and the susceptibility exponent y are found to be
— (7' —1) and 1/t, respectively. Thus the exponents
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depend upon the parameters g and o, which seem to play
a role analogous to dimensionality for this system. The
exponent § for the order parameter is found to be +,
which is same as in the uniform case.

We next turn to the calculation of the correlator
C;; =(S:S;) for K =K. It is easily seen that

Ci=K 'Y (wrzzsli);:r;;l ‘>’ (14)

where {i|vm) and its transpose (vm |i) denote the
eigenvector of J, with m labeling the eigenvalue and v
denoting the degeneracy index. Because of permutation

KC() ==y =r/D) " +k Y 0 "(zy—hm) L

m=/+1

Evaluating the sum by an integral approximation, it is
seen that for />¢& where £=|Inz,|/|Ing |, the sum
gives the dominant contribution, and

CaKk YK, —K) Vgt*l s e an

If, on the other hand, / <&, the integral contributes to
the same order as the first term in Eq. (16) and

CU)=0/bK)(k/o|Ing | "' —g)(go) " (18)

Thus, the correlations decay exponentially, the decay be-
ing weak in the regime / <¢ and rather strong in the re-
gime /> ¢&. In both cases the decay rate is temperature
independent, unlike the behavior in uniform systems.
The quantity £, which determines the regime of strong
correlations, behaves like the usual correlation length
and diverges like In(K, — K ).

A new kind of almost universal behavior is obtained

when g > o7 /2. This is because in this regime, to lead-
ing order, z; < (K, — K and
g(z) =g (Frg) +2bK.z, —aizf+ ... . (19)

The susceptibility exponent y is now found to have the
classical value of unity. For the specific heat, the lead-
ing terms given in Eq. (19) give no singularity at all at
the critical point. Keeping the next term then yields for
K=K.and g <o~ '3,
e L 2K AT kyee | Qo)
kB 2 (3] a)
For ¢ > 6~ ', 1, in Eq. (20) is replaced by unity. Note
that the specific heat now has a discontinuity at K, since
¢ =kpg/2 for K > K.. The exponent of the order parame-
ter remains unchanged. Similarly the expression for the
correlator is only slightly modified,

C=K"YK.~K) 1g"* I>e

while for / <&, the expression is the same as Eq. (18).
Thus, apart from correlations the thermodynamic behav-
ior is completely classical in this regime.

symmetry among sites within clusters and among super-
sites within superclusters, the correlator C;; =C;j, where /
is the ultrametric distance between sites i and j. Recal-
ling the characteristics of eigenmodes, we note that only
modes of generation / and greater can contribute to
C (). The contribution of /th-generation modes to C (/)
works out to be —o /(z;—A;/2)"!. The contribution
from all the higher-generation modes can be evaluated
by our noting that for such modes i/ and j are condensed
to the same supersite, i.., (i | vm) =(j | v» ) and"!

Zv(ilvm)2==(c—l)/o’". (15)
Thus

(16)

We now consider the antiferromagnetic interaction
Ji=—Jr'"'. The spectrum is now inverted. The
highest eigenvalue is u; =J and its degeneracy is Nk/o.
The ground-state ordering has to occur in one of these
modes. The system is frustrated for any value of 6. For
even values of o, the moment of each generation cluster
is zero. A typical ground state for o =4 is shown in Fig.
1. Because of permutation symmetry any arrangement
that permutes spins within clusters will serve the purpose
equally well. Let us now consider the possibility of a
transition in this situation. The saddle-point equation
reads

K =55 o7+ +ro—bg™ @1
O m=0

Since we now have a series of well-separated poles at the
top of the spectrum, the solution of this equation is quali-
tatively different from the ferromagnetic case, as is clear
from Fig. 2. We have a multivalued solution, but the
physical considerations select the solution on the right-
most branch. Since one has a solution for any value of
K, the system has no phase transition. For the solution
on the rightmost branch, it is reasonable to approximate
the sum by just one term, i.e., K =k/20(z, —+). This
solution may be used to obtain the thermodynamic quan-
tities of interest. The expressions for entropy s and for X
are

s/kg=[1+In(xkgT/J) —g(z,)1/4, (22)
X=kupé/20kgT. (23)

Thus in this approximation the susceptibility is seen to
have a Curielike behavior right up to zero temperature.
To conclude, we find that the model proposed here ex-
hibits a new variety of critical behavior in the ferromag-
netic transition. Since the model as such has no spatial
dimension, the parameters o and g play a role similar to
dimension in the sense that the critical indices depend
upon them. There is even a phenomenon like upper criti-
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FIG. 2. Graphical solution of Eq. (21).

cal dimension in the sense that critical indices become
independent of o and ¢q. The origin of this peculiar criti-
cal behavior lies in the hierarchical organization of the
model. For antiferromagnetic interactions, the model
shows no phase transition, which is related to the fact
that in this case the most favorable modes for condensa-
tion are localized.
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