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Nonlinear Behavior near the Percolation Metal-Insulator Transition
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Measurements on discontinuous thin gold films near the percolation threshold show that the current at
which nonlinear response takes place, I;„, scales with the conductance Zo, as I,'„-Xg, x 1.47~0.10.
Two possible theoretical models have been considered and studied analytically and numerically. The
first is based on local nonlinear contributions from the metallic constituents. The second models non-

linear hopping or tunneling across narrow insulating bridges. Only the second model is compatible with

the experiment.

PACS numbers: 72.10.-d, 05.50.+q

Continuous phase transitions in inhornogeneous sys-
tems are characterized by the vanishing of some physi-
cally relevant quantity: the inverse susceptibility (for di-
lute magnets), the stiffness moduli (for elastically inho-
mogeneous systems), the conductivity (for metal-
insulator mixtures), etc. This is usually accompanied by
the shrinkage of the linear-response regime as the transi-
tion is approached. In this paper we consider the per-
colation metal-insulator transition. For metal concentra-
tion (p) slightly above the percolation threshold (p, )
and for a sufficiently weak external current (I,„), the
voltage (V,„) satisfies I,„ZnV„wehr cthe linear con-
ductance vanishes as p p,+, Zn- (p —p, )'I.t"

'I"Lt 21. Here ( is the percolation correlation
length and L is the linear dimension of the system. As
the external current is increased one may expect devia-
tions from this linear behavior. We define a crossover
point (I;„,V;„) at which the (nonlinear) conductance de-
viates significantly (by a fraction 8) from Zn, i.e.,
I;„ZV;„,Z Zn(1+a). Note that we consider here a
reversible process; as the external bias is reduced we re-
turn to the linear-response regime.

We report here for the first time results of both exper-
imental and theoretical studies of the crossover to the re-
versible nonlinear regime. For two-dimensional samples
slightly above the percolation threshold our measure-
ments yield

with

x =1.47+ 0.10.

In order to explain the scaling behavior of the crossover
point we have considered two phenornenological models.
The first model uses a nonlinear random resistor network
(NLRRN) which assumes that the conducting backbone

consists of microscopic components. The current-voltage
characteristics of each such component contains a small
nonlinear contribution (physically this may reflect, e.g.,
local heating effects due to the applied current). The
nonlinearity is amplified because of the tenuous structure
of the infinite conducting cluster at p p, and we find
for d 2 that

x & v/t =1.03. (3)

(ii) We have performed a finite-cell renormalization-
group analysis. This yielded at d-2, x=1.68+ 10%.
(iii) By assuming some general analytic properties of
Z(V,„) we present arguments that suggest x 1.5, in

very good agreement with the experiment. Interestingly
enough, although we have included a free parameter (a,
see below) in our NLRRN, that model could not ac-
count for the measured value of x. Thus, by working out
phenomenological models we have not only succeeded in

explaining the experimental value of x, but have also ob-
tained a strong indication about the microscopic mecha-
nism that governs the nonhnear regime (i.e., nonlinear
hopping or tunneling). We hope that our work will

stimulate further direct studies of the microscopic as-
pects of the problem. %e also emphasize that the cross-
over discussed here is quite general and should have

This is incompatible with (2).
The second model is of a dynamic random resistor net-

work (DRRN). This model assumes that in the presence
of a sufficiently strong local field a nonconducting chan-
nel may become conducting. (This may be used to mod-
el the onset of nonlinear hopping or tunneling across nar-
row insulating "bridges. ") We have studied this model
in several ways: (i) By employing general scaling argu-
ments we have sho~n that

x (1+v/t -2.03.
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qualitative analogs in, e.g., other metal-insulator transi-
tions, the elasticity problem, etc.

The experimental measurements were performed on
thin Au films which were near the percolation transition.
In previous works the geometry of the systems has been
shown to conform with 20 percolation theory and
some dynamical aspects of these systems including dc
and ac conductivity~ and 1/f noise, s have been studied.
The fabrication of these films is described in the above
references where extensive electron-microscopy studies
of the clusters can also be found. However, some impor-
tant experimental points will be reviewed here.

The Au films, vapor deposited onto a variety of glassy
substrates, had a nominal thickness of about 7 nm. Two-
and four-terminal electrical contacts were in place on
these substrates prior to the evaporation and were used
for the room temperature I-V measurements. This ex-
periment required many samples of different resistance
values near the percolation threshold. This was accom-
plished either by closely controlled evaporation tech-
niques in which the samples approach the threshold from
the insulator side or by subtractive etching in which they
approach from the metal side. Both types of samples ex-
hibited similar nonlinear I-V behavior. At low voltages
the samples generally show a linear characteristic as ex-
pected and the nonlinearities appear as the bias is in-
creased. It should be observed that at yet higher biases
irreversible changes occur. The data reported in this pa-
per were taken in the reversible range.

Next, I;„for s 0. 1 was plotted (see Fig. 1) as a func-
tion of R I/Ep and Eq. (2) was obtained from these
data. Data were also taken for s 0.4 which were indis-
tinguishable from the values at 0.1 ~ The identification of
the linear and nonlinear regimes could generally be firm-

ly established by use of computer-generated, point-by-
point derivatives of the I„-V,„curves, i.e., fram R-V,„
plots.

Our model of NLRRN consists of a bond-percolation
system at p & p, . Each bond represents a resistor whose
current-voltage relation is given by9

V rI —AI',

with a & 1. For sufficiently small currents the behavior
of each microscopic resistor is basically linear; the cross-
over to nonlinear behavior is given by I'- (r/
~A ~

)'~t' '~. We are interested, however, in the cross-
over behavior on the macroscopic scale, L. In general, a
combination of microscopic resistors cannot be described
by an effective resistor whose behavior is of the form
described by Eq. (5). However, if we consider small de-
viations from linearity, the term AI' can be treated as a
small perturbation. Consequently, resistor configura-
tions can be renormalized and we can study the scaling
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FIG. 1 . The crossover current I,„vs the resistance R. The
points for s 0.1 and 0.4 fell on top of each other. The dif-
ferent symbols represent separate fabrication runs with several
samples measured from each run. The separation in current at
the same resistance is a representation of the uncertainty.

y - [I/(a —1)]in[8x 3'/(2'+'+2+ 2x 3&a+'&)]/In3.

For 1 & a & , 0.107 & y & 0. The above considerations
imply that y ~ 0 for percolation systems, "L (g.

In order to establish the relation to the macroscopic
(L & () crossover current, I;„, we note that on scales
L ~ g the number of independent channels is of order 1

and does not scale up with g. The current within a block
of size ( is '

I (g) —I,„/(L/g)'

Since P(()—Zp(&) ~ we obtain

of the parameters r and A. For example, the effective
parameters for two identical resistors in series are
r,' 2r, A,

'
2A; for two resistars in parallel we obtain

r~ R/2 and A~ A/2'. The scaling of I' is then
straightforward.

We have performed calculations on several finitely
ramified'0 fractals. We found I'(L)-ZD(L) ~, where
Zo(L) is the hnear conductance on the scale L. For to-
pologically one-dimensional structures (resistors in
series), y 0. For structures with parallel channels
larger macroscopic currents are needed to produce the
same effect on the microscopic resistors; I' scales up and
y & 0. For the branching triadic Koch curve, 'Ob for ex-
ample, we find that

Ie„—exp([(d —1)U/r +y [(d—2) v/t —I ]] lnXp) exp[(d —1 —(d —2) [v/r (d 1)+y [(d —2)U/r —I ]]) ln—L ],
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FIG. 2. A 3X3 sample with a conducting path between the
electrodes. (a) For an external voltage V & —', Vo the original
bond configuration is maintained. (b) For V& —,

'
V0 a new

conducting channel between A and 8 is opened.

n-' '-'+[(V- Vo)/(nV —V )]"(n"-' n '"+'-')--

where ZD=ZO(L ). For d 2 this yields Eq. (3).
Our second model, DRRN, assumes that once the

voltage across an unoccupied bond on the lattice is larger
than some critical value, Vo, a conducting bond (identi-
cal to an original linear bond) is generated. '3' This is

demonstrated in Fig. 2.
Within the self-similar scale we shall typically have al-

most touching tips of conducting clusters. To obtain an
estimate for the onset of nonlinearity we first consider a
portion of the infinite cluster and assume an extreme
case where this cluster forms a one-dimensional loop of
size g, opened at one end. The voltage drop across that
open end is d, V-I,„(g)/Z0(g) -I,„g'+'I"/L" '. The
nolinear behavior appears when d, V-VO, which yields
(ignoring factors of L) I;„-g 'I" '-Zot'+"~'1. Since in

general we may have smaller semiopen loops, as well as
parallel channels, we expect inequality (4) to prevail.

Next we have performed a finite-cell renormalization-
group calculation. Following Bernasconi' we have di-
vided our system into n &n cells (n 2-5). For each cell
size we have found the configurational-averaged
current-voltage and conductance-voltage curves (see Fig.
3). These curves reflect -50 h of computer calculation
on the VAX 11/780 machine. For n 2,3 all possible
bond configurations have been averaged over. For
n 4,5 we have averaged over 10000 configurations
each. ' For each configuration the external voltage was
varied starting at Vo at increments of b(n —l)VO, with
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8 5'0, and the current distribution was calculated self-
consistently. Smaller increments (8 & ) did not pro-
duce any noticeable change in the curves. Both geomet-
ric and arithmetic averaging produced similar results.

For small V,„ the conductance approaches its linear
value. By finite-size scaling the cell's conductance
should scale as n '~" (for V«0). We found r/v-1. 0
in fair agreement (up to -3%) with the current accept-
ed value. One can also read from Fig. 3 the scaling of
I;„. The value we find for x is quite sensitive to our
choice of a and the linear rescaling factor. This may
suggest that larger cells should be studied before the
value of x is determined accurately. For s 1.6 we ob-
tained' x —1.68 with an error in excess of 10%.

The following argument suggests that the value of x
may be exactly 2. Setting the conductance of a micro-
scopic resistor equal to 1, Z reaches a saturation value
(n" z) at V,„nVO (at this voltage all channels con-
duct). One may assume a functional form for Z(V,„)
which interpolates between its value n2 -'~" at
V,„(Vo and the saturation value. If we assume a
power-law dependence's of the form

0- I I I I

0 0.5 Vo I.O I,5 2.0 2 5 3 0 3 5
V

FIG. 3. The conductance Z vs the external voltage V,„ for
several sample sizes. The curves are obtained by our taking a
geometrical average over random configurations. Arrows indi-
cate the saturated value of Z (only a fraction of the points is
shown).

we find that the crossover occurs at V',„-n '

(n &g). For n ) ( we have I' -n
hence I,'„-Zot +'~~s. On the assumption that Z is an an-
alytic function of V,„ for V,„&Vo, it should be an even
function of the voltage in the limit Vo 0. This implies
b 2 and consequently x 2 in agreement with the ex-
periment.

Finally we note again that we have sho~n in the fore-
going discussion [e.g., Eq. (6)] that when the external
bias (V,„or I,„) is held fixed, the current per channel
I (g) (on scales L -g) increases as the percolation
threshold is approached. This eventually induces non-
linear behavior. Thus, in practically all experimental

i
measurements (p~ p, ), the nonlinear regime will be+

reached.
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' This behavior may be a special case of a more general be-
havior ~here the two asymptotic regimes are governed by two
different scaling functions matched at the crossover point. %e
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