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Universality of Quantum Hall Effect: Topological Invariant and Observable
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%'e show a universality in the quantum Hall effect in that the flux-averaged Hall conductivity in any
t~o- or three-dimensional system with or without disorder is given by a topological invariant quantized
in units of e2/h at T 0 for every energy level in a finite system. Relevance to the observable Hall con-

ductivity over the ~hole energy spectrum is presented together ~ith numerical results for lattice systems.

PACS numbers: 72.20.My, 03.70.+k, 71.10.+x

The current interest in the quantum Hall effect' leads
naturally to the question of how this remarkable quanti-
zation is universal. This query comprises two stages: (i)
Exactly what property of the wave function specific to
systems in a magnetic field gives rise to the quantized
Hall effect'? (ii) Given an exact proof for the quantiza-
tion, what is the actual relevance to the observable quan-
tities? In this Letter we first show that the quantum
Hall effect is indeed universal. Namely, the Hall con-
ductivity for any single sample in finite magnetic fields
in any two- or three-dimensional system with or without
disorder is quantized in units of e /h at T 0 for every
energy level in a finite system. The ubiquitous quantiza-
tion comes from the fact that the Hall conductivity can
be expressed as a topological invariant in a mapping
from the gauge field to the complex wave function.
Second, we proceed to show that, although the topologi-
cal invariant varies from one eigenstate to another, its
value has a definite distribution for a given system size
and degree of randomness in the system resulting in the
averaged Hall conductivity as a continuous function of
energy. Thus the observable Hall conductivity over the
whole energy spectrum is worked out from the some~hat
esoteric topological invariant. The original theoryz'
showing that the quantized Hall plateau is a conse-
quence of the localization is also confirmed. The close
relation of the quantum Hall effect with the gauge trans-
formation was already anticipated by Laughlin from the
very early stage of the theoretical study. The topological

aspect of the Hall conductivity has been studied by Av-
ron, Seiler, and Simon4 and Simons for systems with
external periodic potential first studied by Thouless et
al. s A similar argument has also been employed by Niu,
Thouless, and Wu in a discussion of the quantum Hall
effect in many-body systems. However, these studies as-
sume translational invariance of the system with Bloch
wave numbers, or EF being in a gap. In contrast, we
work on the Hall conductivity in a general case to give
the properties of o„~ over the energy spectrum with both
extended and localized regimes. The analysis also opens
up a natural way to relate o„y with the diagonal conduc-
tivity, o„,a direct probe of localization.

In a magnetic field, the Hamiltonian hatt of a system
contains the vector potential, Ao with rot(Ao) H. In
the presence of external Aharonov-Bohm (AB) magnetic
fluxes, Ao is replaced by An+A with an extra vector po-
tential, A (A,A„).s In the Laughlin geometry with
the system wound into a cylinder, a magnetic flux 4„
penetrates the opening of the cylinder. The full vector
potential, A, introduced here may be thought of as two
magnetic fluxes, (@„,4r) (A,L,ArL ), which penetrate
respectively inside and through the opening of a torus
when we impose periodic boundary conditions in both x
and y directions for the system of size L. According to
the Byers-Yang theorem, the physical system assumes
its original state every time A, or A~ increases by po/L,
with po hc/e being the magnetic-flux quantum. The
Hall conductivity at absolute zero temperature is gen-
erally given by the Kubo formula asz'n

t

cr r J' dE f(E)Tr j„ReG(E+iO)J'r Im6(E+iO) —(x y),i' "aE
where 6 (z —'S) ' is the Green s function. Since the current operator is expressed as j c Wf/8A, the Hall con-
ductivity averaged over A„and Ar, which we shall denote (o„r), can be written as

aG-' eG-' aG-'
dz„I „dA, dArTr 6 6 6 —(x y) .
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The path C for the energy in the complex plane may be

taken as an infinite line parallel to the imaginary axis,
since, when the states at EF are localized, the matrix ele-

ments of the current vanish there. C may be regarded as
a closed contour in the z plane with G(Im(z) ~)

G (Im(z ) —~). We immediately recognize Eq. (1)
as an expression for the topological invariant (Pontrjagin
number)" n, which gives the winding number of the

mapping from the space of (A,z) to the space of G. A
similar expression for the winding number appears in the
gauge-field theory' '3 in a different context. Thus we

end up with (cr„») nez/h for the flux average. For in-

finite systems ca~» is independent of A, so that the aver-

age over A is trivial. For small systems cr„» does depend
on A, a feature which is discussed below.

To explore the physical meaning, ~e can reduce Eq.
(1) to another form. If we integrate the formula over z
and make use of

8u', &P i 8S/8A i a&

8A, (Z.—Z, )

then by first-order perturbation, where u' is the ath
orthonormal eigenstate of the Hamiltonian, we can

I rewrite (cr,») for a fixed number of electrons as

where (u
~

U) stands for an inner product of two ~ectors.
The integral exactly gives the Euler's index (equal to the
first Chem class in 2D). We may note that, in above-
mentioned gauge theory, Euler's index (equal to the
second Chem class in 4D) integrated over space-time
gives the topological charge. Equation (2) shows that
nonzero Hall conductivity arises because each wave

function when the flux is changed as A, A, +~, fol-
lowed by A» A»+bA» can be essentially different
from the wave function when we first let A»~ A»+bA»
followed by A, A„+dA, (i.e., 8/8A, and 8/8A» do
not commute). Note that this is not the Peierls phase
factor, but we are talking of the essential (internal)
phase of the (complex) vector bundle in the Hilbert
space. In fact, Eq. (2) is of the same form as that dis-
cussed by Simon, 5 who identifies the extra phase as
Berry's phase, and by Niu, Thouless, and Wu. 7 The
structure of Eq. (2) is made more explicit by our defin-
ing (nondiagonal) matrices {8,},~——&a ) 8/8A„( p&, {8»},p
-=(a

~ 8/8A» ( p&. The integrand in the equation then be-
comes a diagonal element of a matrix given, with short-
hand u'=-a, A„-:x,etc. , as

an with disorder in site energies in torus boundary condi-
tions. Figure 1 shows the result for (o,») [Eq. (2)l for
an 8X8 lattice with 0 —,' and W 2, where 0 is the
magnetic flux in a unit cell of the lattice divided by &0,

and W is the distribution width of site energies relative
to the nearest-neighbor transfer. The quantization of
(a,»& for euery level is excellently exhibited. The flux
average is accurately obtained from the numerical in-

tegration of a~» calculated from the Kubo formula at
60&60 mesh points in the (A„,A„) unit cell.

More importantly, we can actually look at the struc-
ture of y. The winding number for the mapping from A
to y is nonzero when y as a function of A has a nontrivi-
al global topology. Figure 2 shows an example of the
dependence of a wave function on A. We plot the rela-
tive phase of one coefficient, c;/c~, in u' g, c y; with
the Wannier basis y;. Every wave function has turned
out to be a continuous function of A except for a number

(s~ ap) (s~ ap)

C
88„88„

p +» X

8y8x 8x8y 8x 8y

3-
OJ 2I

I

1

p

which is just the commutator of matrices representing
8/8A, and 8/8A, .

Here it is very illuminating to look at the numerical
result. %e have employed a lattice system of finite size,
since the A8 effect in the quantum Hall effect ~as stud-
ied for the first time' for this system, and the charac-
teristic quantum Hall effect in periodic systems is of in-
trinsic interest. %e employ the tight-binding Hamiltoni-

16 32 48
NUMBER OF EfGENSTATE

64

FIG. 1. The Hall conductivity cr ~ averaged over A„and Ay
is plotted for all the eigenstates in an Sx8 lattice ~ith 8
and fV 2.
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FIG. 2. The phase of a component of an eivenvector (the
eighth in energy) for the same sample as in Fig. 1 is shown as a
function of (A„Ar).
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of phase vortices and antivortices. 's

Here we should mention that, although we consider
the geometry with magnetic fIux, our approach is com-
pletely different from Laughlin's. The latter approach
considers the system with electrodes attached to both
edges to look at the net number of electrons which are
transferred across the electrodes with a potential drop
when the flux is changed from 0 to pu. The occupation
of electrons changes in the system including electrodes,
in which the transferred electrons actually correspond to
the Hall current. By contrast, we consider systems with
no edges, so that there is no electron transfer. We calcu-
late the Hall conductivity at T 0 for each value of
(4„4/), and look at the average of a,I(@„@r).This
may also be regarded as an average when 4 is changed
adiabatically for a sample, since the occupation of elec-
trons always remains in the ground state. Note that no
two energy levels versus 4 can cross in the presence of
disorder in finite systems. If a pair of levels accidentally
cross in a disorder-free crystal, these levels repel each
other upon the introduction of random potentials.

Another essential point is that, in the formulation
above, no assumptions have been made on the details of
the system, so that the formulation applies to any system
in a continuous space or on a lattice with or without dis-
order. The Fermi energy is also arbitrary, so that (a„I)
is quantized for every energy in the localized regime in
infinite systems, or for every energy level for finite sys-
tems with fixed number of electrons. The system is not
restricted to two-dimensional systems, either. In
higher-d dimensions, with a change in the prefactor in
the Kubo formula, we have quantization of Hall conduc-
tance, R„z ' L (a~I) ne /h 'The form. ulation also
applies to many-body systems. In the fractional quan-
tum Hall effect, the discussion is similar except that the
system returns to the original state when the magnetic

I

-2 0 2 4

flux is increased by Mpu, with M being the degeneracy,
in which case (a,r)/(e /h ) is given by an integer divided

by M.
Now we elucidate the behavior of (a„r). Localized

states, which are independent of A, do not contribute to
a„~ and give plateaus. Contribution from states delocal-
ized within the sample makes (a„~) a sequence of step
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FIG. 4. Ensemble-averaged winding number (open squares)
is compared with ensemble-averaged a,~ for A 0 (closed
squares) for 0 —,

' and W 2 for gx8 and 16x16 lattice sys-
tems. Error bars are also indicated.

FIG. 3. The distribution (histogram) and the average (cir-
cles) of the winding number are plotted for each energy bin to-
gether with the density of states for 0 —,

' with two values of
8' for 8X8 lattice systems with ensemble average over 36 sam-

ples.
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functions as EF is swept. How do we get a physical Hall
conductivity as a continuous function of energy? %e
consider the probability distribution of the &cr„~) for each
energy bin averaegd over ensembles (Fig. 3). The distri-
bution is well behaved as a function of energy, and the
ensemble-averaged &cr„~) for small disorder exhibits a
number of plateaus with dips in between due to mixing
of Landau levels, ' while the averaged &cr„~) is
suppressed for large disorder because of small to, r.

Let us now discuss the relation of the flux average and
the usual ensemble average. The ensemble-averaged
&o„y) should coincide, for sufficiently large systems, with
ensemble-averaged cr,y for fixed A, which is the observ-
able. Figure 4 compares the averaged &a,~) with the
averaged o y for A 0. Despite exceedingly small sam-
ple sizes here, the two quantities are seen to have virtual-
ly the same energy dependence. The result shows that
the difference between the two quantities, which dimin-
ishes with increasing size, comes from the strong A
dependence of eigenfunctions for small systems, especial-
ly for regions of energy with strong lattice effects, in ex-
act agreement with Aoki's study. '

The behavior of a„y naturally depends on the sample
size and the localization length. The diagonal conduc-
tivity, cr~„which directly measures the localization, is
also related to the A dependence of the system via the
Thouless number derived from the A-dependent energy
levels. ' ' From this line of approach we can in fact dis-
cuss the scaling properties'9 of the relation of cr,„vs cr,~.
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