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Effective Mass of Neutrons Diffracting in Crystals
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Neutrons propagating in a crystal under diffraction conditions exhibit an effective inertial mass which
is lo~er by 5-6 orders of magnitude than their vacuum rest mass and of both positive and negative sign.
This is verified experimentally by measurement of the enormously enhanced deflection of neutrons sub-
jected to a magnetic force while passing through a silicon crystal.

PACS numbers: 61.12.8t, 14.20.0h, 71.25.9d

Effects of external forces on an electron in a crystal
are often described via the concept of an effective iner-
tial mass, m', defined by the tensor'

(1/m* )„„ I12co(K)/h, tlK„BK

Here p and v are Cartesian coordinates, K is the wave
vector of the in-crystal electron, and to(K) is the unper-
turbed dispersion relation. The value of m' is typically
within one or two orders of the normal electron mass and
is often observed through the attendant effect on the cy-
clotron frequency. The present Letter applies the
effective-mass concept to a Bragg-diffracting neutron
First, we calculate from Eq. (1) that the effective iner-
tial mass of the diffracting neutron is five orders smaller
than normal and, hence, in the presence of an external
force, the neutron's trajectory must exhibit angular and
spatial deflection five orders larger than normal.
Second, we report experimental confirmation of the pre-
dicted deflections and, hence, of the mass values.

We note that the diffraction literature does not use the
effective-mass concept. It has, ho~ever, long been
known that the propagation directions are orthogonal to
the dispersion surfaces2 and, since the dispersion surfaces
are strongly curved near the Bragg condition, the propa-
gation directions are very sensitive to the relative angle
between wave vector and lattice planes. Reorientation of
the lattice planes by bending the crystal continuously
alters this relative angle w'hich results in large curvatures
of the trajectories. Certainly, one can equally well alter
this relative angle by tilting the wave vector with an
external force. In both cases, the resulting trajectory
curvatures are large and of both signs because of the
shape and the dual nature of the dispersion surface. The
trajectories for the case of a constant external force,
which are analogous to those for a homogeneous elastic
deformation, have been calculated from first principles
by %erner who starts from Schrodinger's equation for
neutrons experiencing both the periodic potential of the
crystal and the linear potential of the force. He consid-
ers the trajectory slope parameter I tan 0/tanea,
where 88 is the Bragg angle and 0 is the angle between
the trajectory and the lattice planes, and by deriving the
spatial differential equation governing I (p in his nota-

tion) he obtains the trajectory. His result agrees with
our effective-mass result.

The effective-mass explanation of the trajectory fol-
lows. The dispersion relation characterizing neutrons
near Bragg reflection from lattice planes with reciprocal-
lattice vector G is

co(K) -coo(K)+ It 'Vo

+ Q & V' [fw (f2+ 1)1/2] (2)

Here @coo(K) h K /2m is the kinetic energy of the
neutron (of rest mass m) in the crystal, Vo is the mean
value and VG the 6th Fourier coefficient of the crystal
potential, and the function f(K) h2(2K G+6z)/
4mVG is introduced. In the tensor generalization of
Newton's second law' the acceleration a due to a force F

a„-(I/m')„„F. (3)

From Eqs. (1)-(3), the instantaneous acceleration of an
in-crystal neutron is

a- —~ (1 —r')"'(G F)
2 G,

F
(4)

m 4m Vg

where the relation'01 ~f/(f2+1)'l2 has been used to
eliminate K. The first term in Eq. (4) is the convention-
al Newton's second law in vacuum. The second term
arises from the interaction with the crystal medium. For
a constant force, it is equivalent to %erner's spatial dif-
ferential equation.

The second-term acceleration has several remarkable
features: (1) It depends only on the component of the
force parallel to G; (2) it is directed along G; (3) it is in-

dependent of neutron wavelength for a given I; (4) it
varies with the trajectory slope parameter I; (5) it may
be orders of magnitude larger than the first term", and
(6) it may be of either positive or negative sign, i.e., the
acceleration may be opposite to the force For neutrons.
propagating along the lattice planes (I 0.) and for the
force directed along G, the first term may be neglected
and we obtain the effective mass m' + 2mVG/Eg,
where EG=A 6 /2m is the kinetic energy of a neutron
with a wavelength equal to the interplanar spacing. For
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FIG. 1. The experimental arrangement used in the study of
the reduced inertial mass of neutrons in crystals.
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the Si(220) reflection we obtain therefore m'/m
+ 4.72x10
In the experiment, we studied the deflection effects of

an external force on the trajectory of 2.46-A-wavelength
neutrons diffracted by (220) planes in a silicon crystal. '2

The necessary high collimation of the incident beam was
provided by a precursor crystal, a crystal collimator as
shown in Fig. 1, which for stability reasons was mono-
lithic with the second crystal on a common base. Each
of these crystals had a thickness of 52.2 mm. As in a
conventional Stern-Gerlach experiment, the force on the
neutron inside the second crystal was provided by an in-
homogeneous magnetic field created between flat and
tapered electromagnet pole pieces; semiclassically,
F —V(+' p8). In order to mimmize the effect of in-

homogeneous fields in the first crystal and in the crystal
gap, a homogeneous magnetic field (of magnitude equal
to that at the neutron entrance point in the second crys-
tal) was applied to the first crystal. The magnetic field
was mapped in detail and this was used to calculate de-
flections in the second crystal by means of Eq. (4),
where the small deflections permitted I 0.

Figure 2 shows characteristic results for the measured
intensity distribution in the forward diffracted beam
leaving the back face of the second crystal. The field
gradient indicated on the figure is the gradient at the en-
trance point of the neutrons into the second crystal. The
magnetic field gradient varies somewhat along the neu-
tron trajectories, increasing towards the tapered elec-
tromagnet pole (positive position values in Fig. 2). As
many be seen from Fig. 2 and as also indicated by the
trajectory calculations, this results in a focusing action
on the left-hand-side peak and a defocusing or broaden-
ing of the other peak.

Figure 3 shows deflections of the focused peak (mea-
sured with both field directions) as a function of elec-

tromagnet current, i.e., field gradient, for comparison
with the calculated distribution. The agreement is

within experiment uncertainty. We note that the vacu-
um rest mass of the neutron would result in minute, un-

measurable deflections; e.g. , a 5-T/m field gradient act-
ing on the neutrons in free space for 41.5 ps, which was

o 2
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FIG. 3. Comparison between measured deflections of the fo-
cused peak and theoretical values using the effective-mass con-
cept. These deflections are 2.1X10~ larger than those in the
same fields in free space.
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FIG. 2. Characteristic examples of the spatial intensity dis-
tribution of the neutrons leaving the crystal for various mag-
netic field gradients.
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their flight time through the crystal, would result in a

deflection of only 250 A.
An important feature of the experiment is the use of

unpolarized incident neutrons. Because of the two dif-

ferent signs of the effective mass it is expected that each
of the two spin states splits into t~o rays deflected to-
wards and away from the tapered magnet pole. Since
the force exerted by the field gradient is opposite for the
two spin states, this causes each of the two peaks in Fig.
2 to contain both spin states and both positive- and
negative-mass states.

In order to separate the positive- and the negative-
effective-mass states and, hencet, o demonstrate explicit-
ly that in-crystal neutrons can be deflected opposite to a
force acting on them independently of the spin state, the
beam was bent on its way from the first to the second
crystal by aluminum-prism refraction (Fig. 4). This re-
sults in two beams propagating in symmetrical directions
in the second crystal, each of well-defined effective-mass
sign, yet still unpolarized. Application of the inhomo-

geneous magnetic field then leads to a Stern-Gerlach
splitting of each of these. It is to be expected that the
positive-effective-mass state splits in the same manner as
in a free-space Stern-Gerlach experiment, while for the
negative-effective-mass state the splitting should be in-

verted, i.e., the neutrons of either polarization state in

that beam should be deflected opposite to the forces act-
ing on them.

This was verified experimentally by measuring the po-
larization of the emerging split beams by transmission
through a magnetized polycrystalline Fe plate of thick-
ness 9.5 mm. For intensity reasons the aluminum prism
was chosen such that its bending effect canceled the
field-deflection effect for a given combination of effec-
tive mass and polarization. In order to achieve this can-
celation, the apex angle of the deflecting prism had to be
different for the two prism orientations (see Fig. 4), indi-

cating some slight intrinsic imperfection of the crystal
arrangement (e.g., a misorientation of the two crystals
by 0.053 grad). It is seen that the right-hand-side satel-
lite peaks in Fig. 4 are significantly higher than the left-
hand-side peaks and this results from the highly asym-
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FIG. 4. Separation of the positive- (+) and negative- (—)
effective-mass states. The negative-effective-mass neutrons are
deflected opposite to the force acting on them.

metric spatial intensity distribution in a forward diffract-
ing beam due to dynamical diffraction effects. The po-
larization measurements summarized in Table I demon-
strate explicitly that the effective mass of neutrons can
be of both positive and negative sign.

The effects presented here suggest applications of
magnetic focusing in crystals with modest fields and in

the search for previously unobserved neutron interac-
tions. ' Also, in a gravitational deflection experiment,
for which Earth's g is equivalent to a magnetic field gra-
dient of 1.7 T/m, the neutrons with negative effective
inertial mass will fall upwards!' The neutron effects are

TABLE I. The sign of the effective mass as determined by neutron polarization measurements. For the orientation directions of
the magnetic moment, of the force, and of the trajectory curvature, the sign refers to the positive Z axis pointing tovrards the ta-
pered magnet pole piece. The last line of the table exhibits a pure negative-mass state.

Peak observed (Fig. 4)
Transmission

Measured Expected
Magnetic moment

orientation
Force

direction
Trajectory
curvature Mass sign

Prism apex towards right:
Center peak
Right peak

0.298 ~ 0.045
0.453+ 0.032

0.302
0.501

Prism apex towards left:
Center peak
Right peak

0.474 + 0.027
0.286 ~ 0.026

0.501
0.302
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more spectacular and more directly observable than
those from the effective mass of electrons. This can be
traced to the different rest masses and interactions of the
two particles and to the availability of a beam that can
propagate over large distances in crystals. However, the
physical origin is the same: Any particle, massive or
massless, in a suitably periodic medium, will exhibit an
abnormal inertia.
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SThis relation, a consequence of Schrodinger's equation in a

periodic medium, is not exhibited in the neutron diffraction
literature, which traditionally treats co and K as independent
and dependent variables, respectively. Of course, it follows
from equations in this literature. For example, in Ref. 6, set
the determinant of coefficients in Eq. (12) to zero, solve the re-
sulting quadratic exactly for Q (linear with our co), and evalu-
ate using definition (13) with g 0 to obtain the unperturbed
to(K).

9The same function appears in the literature as y(k), where

k denotes a vacuum wave vector incident on the crystal instead
of the in-crystal K of our discussion. See, e.g. , Eqs. (9.16) and
(9.23) of H. Rauch and D. Petrascheck, in Neutron Diffrac-
tion, edited by H. Dachs (Springer-Verlag, Berlin, 1978), p.
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lattice planes, as in our experiment, boundary conditions re-
quire K 6 k 6 and thus f y.
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jectories. This relation is in, e.g. , Rauch and Petrascheck, Ref.
9, Eq. (9.42), with y f or it may be obtained more directly
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' The magnitude may be increased by reducing Vg, through
variation of crystal composition or selection of crystal structure
factor, at the expense of Bragg intensity.
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~~Of course, neutrons in the positive-effective-mass state will

deflect downwards and by Eq. (4) the average of the upward
and downward acceleration is g.
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