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%e present an integrodifferentialwperator formulation of the problem of linear stability around the
selected needle crystal pattern in dendritic crystal growth. We show by cxpbcit computation that (a) all
members of the discrete set of allowed steady states aside from the fastest are unstabie and (b) the
fastest such shape is linearly stable at least for large enough amsotropy. %A comment on the impbca-
tions of our work for the issue of side-branch wavelength determination.

PACS numbers: 61.50.Cj

Over the past several years, remarkable progress has
been made in the field of interfacial pattern formation.
One important example of this progress is the resolution
of the long-standing problem of velocity selection for
free-space dendritic crystals. ' Specifically, it has been
shown both numerically and analytically' that in-
clusion of finite surface tension leads to a nontrivial mlv-
abihty condition which selects a discrete set of possible
steady-state shapes from the Ivantsov continuous family.
This mechanism, usually referred to as "microscopic
solvability, " also explains pattern selection in other sys-
tems including the Saffman-Taylor finger and direction-
al solidification. s

The purpose of this paper is to provide the next stage
in the study of dendritic crystal growth, an analysis of
linear stability. Stability analysis (linear and finite am-
plitude) should ultimately resolve two issues. First, we
need an explanation for the fact that although all
members of the discrete set are allowed by the solvability
condition, experiments consistently find only one umque
pattern. Secondly, needle crystals are only found in na-
ture in extremely anisotropic systems. Most often, the
needle crystals break down via an instability to a full
dendritic pattern, replete with side branches of fixed
wavelength. The stability analysis should predict this
wavelength as well as the boundary in parameter space
between dendrites and needle crystals.

There have been some previous attempts at the study
of dendritic stabihty. The classic papers of Langer and
Muller-Krumbhaar studied stability around the zero-
anisotropy Ivantsov parabola (plus possibly a perturba
tive shape correction) for small Peclet number. This
work was hampered by the fact that the "correct"
Ivantsov parabola was unknown and, therefore, no pre-
dictions could be made regarding stability of the actual
needle crystaL A more recent attempt by Pelccl resorted
to the somewhat ad hoc WKB approximation introduced
originally by Zeldovich et al. This method, which pre-
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where 6 is the dimensionless undercooling [(Tst —T )l
(L/cp) for latent heat L, specific heat cr, melting tem-
perature Tel, » is the two-dimensional curvature, v„ is
the normal velocity of the interface x(s), and G is the
two-dimensional diffusion kernel. The length do(8), re-
ferred to as the capillary length, is taken to be
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where ye is the surface tension and e is the coefficient of
fourfold crystal anisotropy depending on the angle 8 be-
tween the interface normal fl and crystal axes.

If we assume that x(s) xe(s)+vyt+fib for small b,
we arrive at the steady-state equation
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with y-vdo/2D, R-[(x —x')'+(y —y')']'t', and ECO

thc Bcsscl fllnctioll (lliodlTlcd Hallkcl fullctloll); alld fhc

diets linear stability, is not sufficiently powerful to detect
discrete mode instabilities and cannot distinguish among
different members of the allowed discrete set. Our
method, which relies on the exact numerical solution of
the steady-state equation followed by numerical diago-
nalization of a resulting linear operator, is much more
powerful, applicable at all Peclet numbers, and general-
izable to all other interfacial pattern-forming systems. A
discussion of the stability of the Saffman-Taylor finger
with use of this method will appear elsewhere. 9

The evolution equation for twoMimensional free-space
dendrites growing under thermal diffusion limited condi-
tions is well known:
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linear stability equation
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where & ' [b] —b"—x)b for initial curvature «(s ),
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and to is the tangent vector of the initial interface. In
Eq. (3), y vdo/2D is to be found as part of the solution.
Note that in deriving the above stability equation, we
have used the standard quasistatic approximation and
neglected the time dependence of b in all terms other
than the velocity.

The first stage in our computation is to solve Eq. (3)
for the allowed steady-state shapes. The procedure for
doing this was first established by Vanden-Broeck' and
extended to this system by us and independently by Mei-
ron. 2 The basic finding of these papers is that no solu-
tions exist for isotropic surface tension (e 0) and that a
discrete, possibly infinite set of different allowed values
of y exists at e&0. This discrete set is labeled by [y;],
the largest of which is y~. Later, analytic methods led to
the prediction that all solutions should obey the scaling
y;-e l4, a result in at least qualitative agreement with
the numerical data at all values of the undercooling.

Once a particular steady-state solution y;,y;(x) is
known, we can proceed to evaluate numerically the
linear stability operation. We discretize the curve by
writin

V'+v"'[b(s')]]X (R)e " ''1
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~here Nzt, is the number of points, and similarly define

yj as y(xj) and bj as b(s(xj)). Note that for small x,
x —u whereas for large x, x —u. The Peclet number
Np, tv/2D is found by determination of the tip radius

po of the Ivan stov parabola at undercooling
(xNp, )'l exp(Np, )erfc(N)cl). The perturbation is

required to vanish at distances past u,„. The results
must be then extrapolated to infinite cutoff u~,„and
discretization un~/N» to derive the physical spectrum.

We schematically rewrite Eq. (4) as

A" v(8 A('b

where rv is the eigenvalue and vt'~, 8101, and Al'1 are
N»&&N» matrices. The explicit expression for A ' is
derived by use of standard three-point discretization for
all derivatives and replacement of the integral over s' by
the trapezoidal rule. This procedure is accurate to
0(N&„z). Alai is slightly more complicated because the
logarithmic singularity in the Bessel functions prevents a
simple discretization. We therefore replace the expres-
sion

ds'vt' [8(s')]F0(R )e
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The first term has no singularity and the second equals
v t'1[b(s)] [p —y(Q) «] via the steady-state equation.
We then invert A@i numerically and define the linear
operator Lb (A ) '& ' 6+t„b"—«b. Finally, we

truncate to an M»xM» submatrix of L, where M» is
some number & N», in order to minimize boundary ef-
fects; in practice, M~t, ——,N» is sufficient. This sub-
matrix is diagonalized by use of an EtSPACK. QR algo-
rithm. " For simplicity, we have only studied the case of
symmetric modes and hence the index i only ranges over
positive values. In the presence of crystal anisotropy,
symmetric modes (tip splitting and/or side branching)
are expected to be of much greater significance than an-
tisymmetric modes, but this needs to be verified.

One stringent test on the validity of this approach and
the correctness of the code is the existence of a transla-
tion zero mode. At all allowed solutions, there must be
one mode at m 0. As a test, we generated a 150-point
solution of the steady-state equation at Np, 0.25,
e 0.25; this solution has y 2.899x10 . %'e then
generated y(x) via a spline routine, determined yj and

xl accordingly, and ran the stability program at (M»,

i

N&t„u~~) of (100, 200, 7.5) and (150, 300, 7.5). (One
useful way of thinking about the discretization scale is to
recognize that for these typical values of our numerical
cutoffs, it varies from 0.01 to 0.1 of the tip size. ) The
translation mode could be extrapolated to occur at
rv-1 x10 3, a factor of SOOO smaller than any other
mode (see later). This value is consistent with our esti-
mates of steady-state solution error and can be systemat-
ically improved by going to more points. It is insensitive
to u~,„once it is large enough (» 6).

At all values of e which we have studied, the spectrum
consists of three distinct pieces. At large negative Redo

there is a real continuum with Imrv 0. The end of the
real continuum occurs at a point on the negative Rem
axis. From there, a complex continuum emerges and
continues to a maximum growth rate which is still nega-
tive. This part of the spectrum is plotted in Fig. 1 for the

0.2S case discussed above, at (250, 500, 10.0). Vari-
ation of u changes the spectrum slightly. However,
just as was the case in a previous study' of the
Saffman-Taylor finger, no continuum mode is unstaMe.
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FIG. 1. Complex continuum at s 0.25, and y 2.899
x10
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FIG. 2. Complex continuum at s 0.75, y~6.56X10 ~.

This result is true at all values of the cutoff parameters.
We have verified the absence of continuum-mode insta-
bilities for all s» 0.075 at Np, 0.25. We have checked
that this type of behavior for the continuous spectrum is
qualitatively independent of Nr, . Later, we comment on
what might be expected at very low s and how this issue
relates to the determination of side-branch spacing. We
now turn to the major result of this work, a computation
of the discrete mode instabilities.

At s 0.25, the case considered so far corresponds to
the largest velocity pattern. Here, there is one additional
discrete mode at ai —3,6. Hence, this steady-state
solution is linearly stable. Next, we computed the
second allowed solution at s 0.25, which occurs at
yo 2.96 x 10 . Now, there are discrete modes at
ro +12.5, 0, and —2.3. Therefore, there is a discrete-
mode instability which prevents this particular steady-
state pattern from ever being observed experimentally.
The eigenmode corresponding to the positive ai eigenval-
ue decays away from the tip, and hence can be interpret-
ed as a tip-region instability.

We have done a similar study at Ni, 0.25, e 0.4.
Now, the fastest three solutions correspond to 7i 4.721
x10 3, yz 5.16x10, y3 1.65x10 . All of these
solutions give rise to stability operators for which the
translation mode is —10 -10 ', which is a measure of
the accuracy of our numerics. The corresponding
discrete mode spectra at these three values are respec-
tively (0, —6.6l, f+ 11.34,0, —2.92j, and f+ 26.6,
+15.03,0, —0.9l. Note that the third solution now has
t~o unstable modes& The sum total of all our runs at
differing parameter values provides incontrovertible evi-
dence for the following scenario: As y is lower& at
fixed s and Np„we pass through a discrete set of al-
lowed values corresponding to steady-state solutions of
the interfacial evolution equation. Each additional solu-

tion has one additional tip-splitting instability. As we

approach y 0, we approach the completely unstable
spectrum of tip-splitting modes expected for the Ivantsov
parabola in the zero-surface-tension limit.

This type of spectral fiow seems to be a necessary side
effect of the solvability mechanism which gives rise to
the discrete set of solutions. Prior to this work, it had
been shown (first approximately, 'z later exactly9) that
exactly the same scenario is valid for the Saffman-
Taylor finger. We suspect that the WKB methods'3
that have recently been used to demonstrate the selection
mechanism analytically can be extended to prove this
property of the linear stability operator. This result
means, of course, that finite surface-tension effects select
a unique steady-state pattern for the physical system, a
fact in agreement with generations of crystal growth ex-
perirnents.

We have not yet seen any evidence for a linear insta-
bility or a marginal mode. Our calculations have ex-
tended all the way down to s 0.02 and over the range
0.01 & Np, (1. For example, a graph at a 7.5' anisot-
ropy, presented in Fig. 2, is not different in any signifi-
cant way from Fig. l. One immediate corollary is that
tip splitting seen in almost isotropic systems must be
thought of as nonlinear instability, similar to the current
ideas regarding tip splitting for Saffman-Taylor fingers.
This agrees ~ith the approximate computation of Pelce.
More importantly, our results bear directly on the issue
of side branching. Our results mean that side branching
must be understood via the amplification of finite noise
as the disturbance moves away from the tip. ' ' One en-
couraging fact pointing in this direction is that the most
unstable part of our spectrum (and hence most likely to
be excited by finite noise) is indeed stationary in the lab-
oratory frame. An approach to the determination of the
side-branch wavelength based on this idea will be
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presented elsewhere.
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