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Calculation of the Shell-Model Potential from the Optical-Model Potential
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A dispersion-relation approach is developed for deriving the shell-model potential from the optical-
model potential, i.e., for extrapolating the mean field from positive towards negative nucleon energies.
This method is applied to neutrons in ~Pb. The average neutron-nucleus potential is assumed to have a
%oods-Saxon shape; its depth, radius, and diffuseness are calculated for nucleon energies with range
from -20 to+40 MeV.

PACS numbers: 24.10.Ht, 21.60.Cs, 25.40.0n, 27.80.+~

The nuclear mean field M(r;E) V(r;E)+iW(r:E)
plays a central unifying role in the interpretation of
many nuclear structure and reaction properties; r
denotes the distance from the nuclear center and E the
nucleon energy. For E &0, M is called the optical-
model potential and is used for the description of scatter-
ing cross sections. For E &0, V(r;E) is called the
shell-model potential and describes the single-particle
states observed in nucleon transfer reactions. Although
the mean field is a continuous function of the energy, its
behavior as the energy changes sign is not simple' be-
cause of the coupling between the single-particle degree
of freedom (the elastic channel in the terminology used
in reaction theory) and other degrees of freedom (associ-
ated with core excited states in the terminology used in

nuclear-structure theory or with inelastic channels in the
terminology used in reaction theory). Besides giving rise
to an intricate energy dependence of V(r;E), this coup-
ling is responsible for the existence of an imaginary part
in the mean field. It is therefore natural that these two
features are interrelated. In the present paper, we use
the empirical information on Wtr;E) to obtain detailed
information on the behavior of V(r;E) as E changes
sign.

We make the standard assumption that V(r;E) has a
Woods-Saxon shape:

v(r;E)- -Uy
I+expf(r —&y)l&y)

'

The main purpose of the present Letter is to propose a
method for the extrapolation of the potential parameters
Uy, Ry, and ay from positive to negative energies. This
method will be applied to the n-~Pb system. This ex-
trapolation is of great interest since much more informa-
tion on these parameters is available at positive than at
negative energies. Indeed, in a scattering experiment
many experimental data (differential and polarization
cross sections at many angles) are available for a chosen
bombarding energy. In contrast, the empirical informa-
tion on V(r;E) for E & 0 is available only at the discrete
single-particle (SP) energies Ej associated with bound
SP excitations; furthermore, this information is usually
limited to the SP energies E~ themselves, i.e., to one da-

turn point at a few discrete energies.
The microscopic nucleon-nucleus potential can be

identified with the mass operator At(r, r';E ) ' which as in-
dicated is a nonlocal, energy-dependent operator. We
write this mass operator in the schematic form At V
+i'N It is. analytic in the upper half of the complex E
plane, and therefore satisfies the following dispersion re-
lation (DR)':

V(r, r';E) -VHF(r, r')+—,' ' dE' (2)

VHF+hV(E), (3)

where for instance VHF(r;E) is the local equivalent of
VHF(r, r'). We assume that W(r;E') is symmetric about
E' EF,~"5 adhere EF is the Fermi energy which lies half-

say, where P denotes principal value. This DR can be
viewed as a consequence of causalityz and is the analog
of the Kramers-Kronig relation in optics. The contribu-
tion dV (E) depends upon E: It is the "dynamic part"'
of the mass operator; by analogy with optics, we call it
the dispersive contribution to the mean field. It is due to
the coupling between the elastic and nonelastic channels.
It vanishes when 'N vanishes, i.e., when nucleon-nucleon
collisions are omitted. Then, V reduces to VHF which is
thus the potential which is obtained when nucleon-
nucleon correlations are omitted in the target, and when
the latter is assumed to remain in its ground state
throughout the collision process. The quantity VHF will

therefore be called the Hartree-Fock (HF) component of
the mean field'4; it is real, nonlocal, and independent of
energy.

One can construct local potentials which are
equivalent to nonlocal ones, in the sense that they yield
the same scattering phase shifts and SP energies. These
local equivalent potentials depend smoothly upon energy.
It can be argued's plausibly that the DR is also obeyed
approximately by these local equivalent potentials. It
then reads

v(r;E) -VH, (r;E)+—,' dE;P '" W(r;E')
g ~ —oe
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way between the two valence shells (EF —5.65 MeV
for neutrons in Pb). Then V(r;EF) V»(r;EF): At
the Fermi energy, the shell-model potential becomes
identical to its Hartree-Fock component.

It is difficult to make direct use of Eq. (4), because
the radial dependence of the imaginary part W(r;E') is
not very accurately known empirically. However, compi-
lations of empirical optical-model potentials show that
the energy dependence of the radial moments (r&]y and
[rv] u, where, e.g. ,

4x[rv]~(E) W(r;E)r dr (5)
0

is quite well determined empirically, for exponents q
which range from 0.4 to 4. This property is useful be-
cause the radial moments satisfy the following DR:

p '" bvlg(E')[.vl (E)-[ill»(E)+—,dE', (6)—oo

—400
E

—350X

which immediately derives from Eq. (4). We shall use
the DR (6) to evaluate [rv]y(E) for three different
values of the exponent q, namely 0.8, 2, and 4. From
these three radial moments we shall then determine the
three Woods-Saxon parameters Uy, Ry, and ay. Note
that [r2]y is the familiar volume integral per nucleon
and the ratio [r ]y/[r ]y is the mean-square radius of
the real part of the potential.

The energy dependence of the quantity [r']HF(E) is
due to the replacement of the nonlocal HF potential by
its local equivalent; [r~l»(E) is therefore a smooth
function of E, which can be approximated by a linear
law: [r&]»(E) 8&+CqE, where 8& and Cz are adjust-
able parameters. Equation (5) then gives [rv]y(E) as a
sum of the linear function of energy [r&]HF(E) and of
the dispersive contribution (r&]&y(E). The latter has a
typical energy dependence when E approaches EF be-
cause [rv]z (E) then rapidly varies with energy due to
the closure of nonelastic channels. This property is illus-
trated in Fig. 1(a) in the case of the volume integral per
nucleon [r2]u(E); the full curve represents a least-
squares fit with the following Brown-Rho (BR) expres-
sion:

(E —E,)'
[Iv]g (E)-—

wv' (E —E,)'+ ~,'
in the case q 2. Here, ~~ and oz are two adjustable
parameters. %'e have also performed similar fits for

q 0.8 and 4. The parametrization (7) enables one to
calculate algebraically, for all values of E, the quantity
lrvlzy(E), i.e., the second term on the right-hand side of
Eq. (6).'

Then the remaining unknowns for the evaluation of
[rv]z(E) are the two parameters 8v and Cv which ap-
pear in [rv]»(E). Since we want to extrapolate the
mean field from positive to negative energies, we deter-
mine 8~ and C~ by a least-squares fit to the empirical
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FIG. 1. Energy dependence of the volume integrals per nu-
cleon of the imaginary and real parts of the mean field for neu-
trons in 2Pb. The crosses are empirical values (Ref. 8) asso-
ciated with phenomenological optical-model potentials. The
curve in (a) is a least-squares fit of the empirical tr ]~ with
the BR parametrization, Eq. (7). The lines in (b) represent
the calculated values of [r )HF B2+C2E (dashed line) and of
[r ]y (solid line), as obtained by our determining 82 and C2
from a least-squares fit to the empirical values represented by
the crosses; the open squares are located at the experimental
SP energies Ey and represent values of [r ]z(E~) obtained by
our adjusting the Woods-Saxon depth Uy(EJ) while using the
calculated shape parameters Ry(EJ), ay(E~) being associated
with the extrapolated values of [Iv]z(E~) (q 0.8, 2, 4). The
curves in (c) have the same meaning, except that the squares
are now included in the data set used in the least-squares
determination of 8~ and C~.

valuess of [rvl~(E) for E &0. This yields [rv]~(E) as
algebraic functions of E for all energies. For instance,
the calculated value of [r ]y(E) is represented by the
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solid curve in Fig. 1(b).
Once the three moments [r&)y(e) (q 0.8, 2, 4) are

known, one can calculate the dependence upon E of the
three parameters Uy, Ey, ay of the Woods-Saxon mean
field V(r;E). The dependence upon E of ry RyA
(A 208) and of the diffuseness ay is represented by
full curves in Fig. 2.

The reliability of our procedure can be evaluated from
the following consistency check which, at the same time,
provides a method for the improvement of the extrapola-
tion towards negative energies. We introduce a typical
spin-orbit potential from Dudek, Szymanski, and Wer-
ner. 9 Using the calculated values of Ry(E~) and ay(EJ)
at an experimental SP energy EJ, we determine the
depth Uy(EJ) which reproduces this experimental EJ.
These three parameters Ry(EJ), ay(E~), and Uy(EJ)
determine the radial moments [rv)y(EJ). These are
represented by the open squares in Fig. 1(b), in the ex-
ample q 2. These open squares should fall on the solid
curve if our extrapolation were exact. Figure 1(b) shows
that the trend of the energy dependence is correct but
that a small deviation exists; the same feature holds for

q 0.8 and q ~4.
We thus included the values associated with these

open squares in the data set used for the least-squares
determination of the parameters 8& and C&, and iterated
until the calculated curve [rs) y(E) is stable. It turns out
that this only slightly modifies the calculated parameters
ry(E) and ay(E), while the depth Uy is increased by
about 2%. The final values of Uy(E), ry(E), and ay(E)
are given by the full curves in Fig. 2. Between 5 and 20
MeV, the depth Uy weakly depends upon energy, while
ry rapidly decreases. These features are in good agree-
ment with recent experimental findings. '0 The energy
dependence of ry near EF reflects the importance of the
coupling between the SP states and the vibrations of the
nuclear surface. ' The calculated values of ay are less re-
liable because they are sensitive to small changes of the
radial moments [r&)y, however, the calculated values of
Uy(E) and ry(E) are hardly modified if one assumes
that ay is independent of energy, so that our calculated
values of Uy(E) and ry(E) are quite reliable. "

The final values of [r2)y(E) are represented by the
solid curve in Fig. 1(c). Their agreement with the
empirical values of [r )y is quite good for E positive as
well as negative. An agreement of similar quality is ob-
tained for the moments associated with q 0.8 and

q 4. Figure 1(c) confirms that the energy dependence
of V(r;E) is not simple when E changes sign. Note that
for E some~hat smaller than EF the mean field is less
attractive than in the HF approximation, while the oppo-
site is true for E somewhat larger than EF. This explains
why HF calculations yield too a large value for the ener-

gy gap between particle and hole SP states. '2

In phenomenological analyses, the shell-model poten-
tial is assumed to have the Woods-Saxon shape (I), with

48 „208pb
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FIG. 2. Energy dependence of the parameters (Uv, rv, av) of
the Woods-Saxon mean field, Eq. (1). The dashed lines are
derived from the moments [r~)HF(E) of the HF contribution,

q 0.8, 2, and 4; the solid curves are obtained from the mo-

ments Ir~) v(E) of the real part of the full potential.

10

energy-independent geometrical parameters Ry and ay.
Figure 2 shows that this parametrization is quite crude
in the vicinity of the Fermi energy. In particular, the in-

crease with energy of the volume integral per nucleon

([r )y in the domain) 10 MeV (E &0 MeV is due to
the increase of ry, while the phenomenological analyses
would incorrectly ascribe this to an increase of the depth
Uy. The energy dependence of ry may play an impor-
tant role in the determination of absolute spectroscopic
factors from pickup or stripping reactions. '

Our approach can also be used to improve the estimate
of the influence of the dispersive contribution on the
charge and matterMensity distribution. ' In this context
it would be of great interest to apply it to the p- Pb
system. In order to do so, one should perform accurate
optical-model analyses of the p- Pb cross sections
which are available below 20 MeVs; it is important that
these neve analyses treat the %oods-Saxon parameters
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Uy, Ry, and ay as adjustable. Work on the reanalysis is
in progress. '

In summary, we have proposed a procedure for the
calculation of detailed properties of the shell-model po-
tential for bound nucleons from those of the optical-
model potential as determined from analyses of scatter-
ing cross sections. This method is based on the disper-
sion relation which connects the imaginary to the real
part of the mean field. This method has been applied to
the n- sPb system. At the Fermi energy our calculation
yields the following values for the Woods-Saxon parame-
ters of the shell-model potential, Eq. (1): Ut 41.5
MeV, rt RtA 'I 1.25 fm, and ttt 0.73 fm. We
showed that the coupling between the single-particle and
the other degrees of freedom gives rise to a rapid and
characteristic energy dependence of the potential radius
in the vicinity of the Fermi energy; this reflects the im-

portance of the virtual excitation of the vibrations of the
208Pb core.

Our interest in the relationship between the shell-
model and the optical-model potentials has been stimu-
lated and sustained by Professor G. E. Brown.
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