
VOLUME 57 15 DECEMBER 1986 NUMBER 24

Finite-Size Scaling and Correlation Lengths for Disordered Systems

J. T. Chayes and L. Chayes
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

Daniel S. Fisher
AT@T Bel/ Laboratories, Murray Hill, New Jersey 07974

T. Spencer
The Institute for Advanced Study, Princeton, Weiv Jersey 08540

(Received 10 September 1986)

For a large class of d-dimensional disordered systems, we prove that if an appropriately defined
finite-size scaling correlation length diverges at a nontrivial value of the disorder with an exponent v,

then v must satisfy the bound v~2/d. Given the assumption that such a correlation length can be de-
fined, the result applies to, e.g., percolation, disordered magnets, and Anderson localization, both with
and without interactions. For localization, this puts stringent constraints on scaling theories and inter-
pretation of experiments.
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A number of years ago, Harris' argued that if the
correlation-length exponent v of a d-dimensional uni-
form system satisfies v& 2/d, then the critical behavior
of the corresponding disordered system (with random
couplings) differs from that of its uniform analog. Thus,
for systems where the disorder is irrelevant, v must satis-
fy the bound v~2/d. This condition —which Harris
rewrote in terms of the specific-heat exponent a by ap-
peal to the hyperscaling relation 2 —dv c—is known as
the Harris criterion Several author. s have discussed the
significance of v~2/d for other disordered systems, in

particular for long-range correlated bond disorder in

magnets and for metal-insulator transitions. In the
latter case, Mott argued that a minimum metallic con-
ductivity exists only if v~2/d, but he explicitly did not
rule out the possibility that v & 2/d.

In this Letter, we rigorously establish an inequality of
the form v~2/d for a large class of disordered systems.
We consider any system with independent bond or site

disorder, described by a disorder (impurity concentra-
tion) parameter A,, 0~%,~1, which undergoes a transi-
tion at some value 0 & A,, & 1. With the assumption that
the transition can be characterized (in a sense to be
described below) by a change in the scaling behavior of
the probability of a system-specific, finite-volume event,
this change can be used to define a finite-size scaling
correlation length )J (A, ). We show that if (J(A, ) diverges
as k k, with exponent v according to gf(X)
—X I

", then v ~bey~

v~ 2/d.

Our proof is quite straightforward and surprisingly
general. It follows from a theorem, to be proved below,
which bounds the derivative (with respect to impurity
concentration) of the probabihty of any finite-volume
event in terms of the normal square-root-of-volume fluc-
tuations occurring on the scale at which the event is de-

fined. In particular, unlike Harris*s argument, this
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theorem makes no reference to an analogous uniform
system, and thus applies to problems, such as percolation
and localization (with or without interactions), which
have no uniform analog, as well as to spin-glasses and
other disordered magnets.

In order to derive the bound (1) from our theorem,
one must identify a system-specific, finite-volume event
which is exponentially unlikely at large scales whenever
the system is in the "noncooperative" (e.g. , nonpercolat-
ing, paramagnetic, or localized) phase, but typical on
long scales at or beyond the transition point. Since, on
general grounds, nothing drastic can occur on the scale
of a few lattice spacings, it follows that within the non-
cooperative phase, a natural length scale emerges beyond
which the chosen event becomes unlikely, This scale de-
fines our correlation length, gf(X).

Finite-size scaling correlation lengths have been used
frequently in the study of disordered (and uniform) sys-
tems, e.g. , the Thouless length, 4 which plays a prominent
role in the scaling theory of localization, s and lengths
based on finite-size scaling of "crossing probabilities" in

percolation. 6 Nevertheless, it is by no means obvious
that any given finite-size scaling correlation length is
equivalent —in the sense of critical exponents —to the in-
trinsic correlation length g, defined as, say, the decay
rate of correlation functions. Indeed, in systems with
first-order transitions or intermediate phases, it is possi-
ble that a finite-volume event of the type described above
either cannot be defined or will produce a "correlation
length" which does not coincide with the intrinsic g.
However, from general rcnormalization-group argu-
ments, we expect most critical transitions to be well
characterized by the scaling behavior of appropriately
chosen finite-volume events. In fact, as discussed below,
there are already some systems for which the equivalence
of a gf and the intrinsic g can be rigorously established.

In the remainder of this Letter, we first consider three
systems which are likely to exhibit thc behavior
described above. Next, we present a general definition
of a correlation length in terms of finite-size scaling
events. We then prove the theorem concerning normal
fluctuations of finite-volume events, and show that it im-
plies (1) for systems of the postulated form. Finally, we
discuss the current status of various disordered systems.

We first suggest finite size scalin-g variables for the il-
lustrative systems. These will be random variables
XL, (Q), which are functions of the disorder realizations
0 jn cubes AL of volume L . In particular, we expect
that the typical values (e.g. , medians) Xz of a natural
scaling random variable will obey a finite-size scaling
law

for k near the critical point and L large. The exponent y
and the function f will, of course, depend on the scaling
variable XL. For our purposes, the appropriate variables

XI. are those for which XL decays exponentially for
L » g in the noncooperative phase, but decays no faster
than a power law at the critical point.

Exampies. —First consider bond percolation at densi-
ty 0~X ~ I. For any realization Q, we define WL, (Q) to
be the number of sites on the left face of AL connected
by a path of occupied bonds inside AL to the right. If k
is below the percolation threshold k„and L is large com-
pared with the intrinsic (, such paths will be rare and
Nz(Q) will be zero with probability exponentially (in
L ) close to 1; above A.„Nz(Q ) should typically be of or-
der L" '. At X„Nz (Q ) presumably exceeds some
minimal value (e.g. , Nz & 1) with a nonzero probability
which is bounded below uniformly on all scales.

Next, consider a random-exchange Ising ferromagnet
described by a Hamiltonian with nearest-neighbor cou-
plings J,» independently distributed according to
J„» J, with probability A, and J„» Jb with probability
1 —X, with J, & Jb~0. If T, and Tb are the Curie tem-
peratures of the uniform systems, then for Tb & T & T„
a phase transition occurs at some nontrivia. density
X,(T). Consider the dimensionless interfacial free ener-

gy Zz(Q) of a realization Q, defined as 1/T times the
difference in free energy between boxes AL with periodic
and antiperiodic boundary conditions in one of the coor-
dinate directions. We expect that in the paramagnetic
phase, the probability that Zz is larger than any fixed
value will be exponentially small (in L ), while in the fer-
romagnet phase, Zz will typically be of order L"

Finally, consider the Anderson tight-binding Hamil-
tonian, /i' —5+V„where d is the lattice Laplacian
and the V„are random potentials with independent and
identical distributions. '0 In order to treat this problem
on a similar footing to the others considered here, it is
convenient (although not necessarys) to choose a distri-
bution of potentials characterized by a single impurity-
concentration parameter. A simple choice is a convex
combination of two symmetric uniform distributions of
fixed widths, IV~&&1 and IV2&&1, which we denote
by p, and p„„respectively: pq(V) A p„,(V)+ (1
—

A, )p„,(V). In dimensionality d & 2, for appropriate
choice of w~ and w2, it is anticipated that a transition
occurs for fixed energy E (near the center of the band)
from insulating to metallic behavior at a critical value,
X,(E). We choose for our scaling random variable an
appropriate definition of the finite-size canductance
gz(Q, E) in the box kz. " One expects that on the local-
ized side of the transition, lt, & A,„gL should be exponen-
tially small for large L, while above A,„gL, should scale
as L; at the transition, it is believed to be typically of
order unity (i.e., e /6) on all scales.

Definition of a correlation length It seems t. h—at the
above systems —and presumably others as well —can be
described in the vicinity of a critical point by means of
the sealing of the probability of thc event that a random
variable (e.g. , Nz, ZL, , or gz) is not too small. In partic-
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ular, for a given choice of variable, Xi, we consider the
finite si-ze scaling event Yt, (a,u ) —4'qL" & a), with
a & 0 fixed and u chosen large enough so that XqL" is
typically at least of order unity at the transition point,
i.e., u &y in (2). Let us suppose that, for some choice
of a and u, one can produce a positive constant c so
that (A) on a diverging sequence of scales:
Probe, [Yt,,(a,u)]~2c, while (B) for A. & A,„and for all
positive e, ProbiLXL, L"& e] tends to zero exponentially
in L. We may then define, for A, &A,„a correlation
length as the largest scale L at which the probability of
Yj.(a,u ) exceeds c:

&f(X)=max[L I Probi, [YL, (a,u )]~c).
Notice that gf(A, ) is defined in terms of the probability
that a scaling random variable exceeds a certain value,
rather than in terms of an expectation of the variable.
Our definition circumvents difficulties caused by large
fluctuations near the critical point, such as those which
may occur for the conductance. '2

The correlation length -bound Fro.—m the above defi-
nitions, it is obvious that gf(A, ) & oo if A, &k„and that,

gf(X, ) oo. If the divergence of ff as A, A,, is charac-
terized by the critical exponent v, and if 0 & A,, & 1, we
will show that v~ 2/d in the sense that

log/ (A, )
limsup

I o (" ) I

~2/d

To establish (4), we first prove a result concerning the
normal fluctuations of finite-volume events's:

Theorem. —Consider independently occupied bonds
(or sites) of average density A, . If Y is any event depend-
ing only on realizations in a finite volume A containing

I A I bonds (or sites), then

IdPri, [Y)/cA. I
~aIAI'"

where Pri [Y]=—Probe [Y] and a-=[A,(1 —
A, )]

Proof. —Denoting realizations of bonds (or sites) in A

by 0, we have

Pr, [Y]-g Pr„[0]E,(0),

where Ei (0) is 1 if Y "happens" in the realization
0 and zero otherwise. Since Pri [0] V " (1
—

A, ) i~ "tn~, where n(0) is the number of occupied
bonds (or sites) of the realization 0, it is seen that

dP, [0]/u- '[ (0)—~IAI]P;[0].
Thence, by use of X I A I (n),

I d Prg[Y]/u I
~a'g Pii[0] I n (0)—«& I.

By the Cauchy-Schwarz inequality, the final term is less
than a I A I

Corollary. —For disordered systems with finite-size
scaling events obeying conditions (A) and (B) at a non-
trivial transition point 0 & A,, & 1, any consistent choice'

of &f(k) satisfies (4).
Proof. —At ll.„we have Pri, [Yt,,]~2c, k 1,2, . . . ,

by (A). Using this and integrating the above theorem,
we have that for any A, (say) less than A,„

Pr), [Yt,,]~ 2c —a(X, —X)LP',

with a (determined by a) nonsingular for 0&A,, &1.'s
Thus, with the choice A,k=k, —(c/a)Lk t, it is seen
that

gf(xk. ) «Lt, -(c/a)""(z —xk) '+

Applications and discussion W.—e would like to em-
phasize that the theorem above holds for any system
with independent bond or site disorder. Thus the appli-
cability of the bound (1) [or (4)] to the conventional (
reduces to whether one can define finite-size scaling
events satisfying (A) and (B), and, if so whether the g
so constructed is at least a lower bound on the intrinsic

It should go without saying that in nonpathological
disordered systems with continuous transitions, it would
be rather surprising if such scaling events did not exist or
did not produce meaningful correlation lengths.

For percolation, it has been proveds that a (I defined
from a quantity closely related to Nt. is equivalent (in
the sense of upper and lower bounds which agree up to
logarithms) with the intrinsic g. Thus, with the excep-
tion of the trivial case d 1, the bound (1) holds for the
exponent v. '

In the case of random-exchange Ising ferromagnets,
we can shows equivalence, again in the above sense, of
the intrinsic g to a g defined in terms of sums of corre-
lations from the center to the boundary of a finite box.
Thus, we have a proof of the bound v~2/d for the in-
trinsic g of these systems. Since the Harris criterion is
thought to be violated in 4-e dimensions, this indicates
that weak disorder is relevant. The best exponents for
the resulting disordered critical point in d 3 are
v 0.70, found theoretically, '7 and v 0.73 ~ 0.03,
found experimentally, 's very close to the bound.

As regards random-field ferromagnets, in d & 2 it is
now accepted that these systems have a transition for
weak disorder, 's and we expect v to satisfy (1). Note
this does not imply a & 0, since here hyperscaling is be-
lieved to be violated.

For spin-glasses, the finite-size scaling of a generalized
stiffness~ can be used to define gf. For d 3, numerical
estimates ' ' yield v considerably larger than i.

In respect to localization (with interactions), first, it
should be noted that the theorem applies to systems with
electron-electron interactions and/or spin-flip impurities.
Furthermore, it is possible to prove an analogous
theorem for derivatives with respect to energy, rather
than disorder. Given the appropriate gf, the energy ver-
sion also implies v~2/d for a large class of potential dis-
tributions; moreover, it holds in d 1, where the bound
is known to saturate (i.e., v 2 in d 1). At present, it
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is not rigorously established that some gf is equivalent to
an intrinsic (; this is currently under investigation.

Because of the plethora of theoretical and experimen-
tal work, our results are probably most useful in the case
of localization. Without interactions, extrapolations of
the 2+ s expansion for a time-reversal-noninvariant
Hamiltonian (e.g. , with spin-flip scattering) yield a v in

d 3 violating our bound, although higher-order terms
could correct this tendency. In the presence of interac-
tions, there has been much confusion arising in part from
the question of the relationship between the scaling of
the conductivity, cr- (A,

—
A,, ~", and g. Without in-

teractions, one expects p (d —2)v (so that gL, -I at
A,,), and McMillan proposed that this is also true with
interactions. However, later work has suggested 3 this
may not be the case, although a generally accepted scal-
ing hypothesis (even without calculation of exponents)
has not been put forward. Since several experiments ap-
parently show p =

& in d 3,2s and dielectric measure-
ments from the localized side have been interpreted as
implying v= 2, our result puts severe constraints on
the scaling behavior of localization with interactions and
on the analysis of experiments. More direct measure-
ments of the localization length or other characteristic
lengths are clearly needed.
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