
VoLUME 57, NUMBER 23 PHYSICAL REVIEW LETTERS 8 DEOEMBER 1986

Realistic Calculation of the Indirect-Exchange Interaction in Metals
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It is shown that the indirect-exchange interaction, or Ruderman-Kittel-Kosuya-Yosida (RKKY) in-

teraction, between localized moments in metals can be evaluated numerically for realistic band struc-
tures. The numerical method gives results in exce1lent agreement with the analytical RKKY results for
free-electron bands and is applied to the calculation of the indirect-exchange interaction between nuclear
moments in Cu. %e find the nearest-neighbor exchange-interaction constant to be J —22.6 nK com-
pared to the free-electron RKKY value of J —8.2 nK with the same normalization procedure.

PACS numbers: 75.30.Et, 75.50.Ee, 71.60.6m

The indirect-exchange interaction between either lo-
calized spin moments or nuclear moments, together with
the direct interaction, leads to cooperative phenomena
and ordered phases in metals, semiconductors, and al-
loys. Of recent interest is the observation of nuclear
cooperative phenomena at temperatures below 1 pK in

Cu. ' If the indirect interaction between the moments is
mediated by band electrons, the interaction is often
known as the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction. 2 The RKKY interaction has usually been
calculated for a free-electron model of the bands of the
solid under consideration with the matrix element of the
interaction between the localized moments and the elec-
trons taken to be constant. These approximations yield
an interaction which is oscillatory and decays as the
fourth power of the moment separation. In this Letter
we describe a numerical method for the evaluation of
this interaction which employs both realistic energy
bands and the variation of the matrix elements
throughout the Brillouin zone (BZ). It is shown first
that the numerical technique accurately reproduces the
RKKY result for free-electron bands. The method is
then applied to the calculation of the indirect-exchange
energy between nuclear moments in Cu by use of realis-
tic energy bands.

There have been several previous attempts at the use
of less idealized band structures to calculate the indi-
rect-exchange interaction and these have indicated that
deviations from a free-electron band structure may have
a significant effect upon the strength and form of the in-
teraction. Roth, Zeiger, and Kaplan3 showed that paral-
lel and cylindrical portions of the Fermi surface can con-
siderably extend the range of the interaction, with the
decay becoming linear in the former case for intermo-
ment vectors perpendicular to the parallel surfaces. In-

vestigations of the role of the band structure and the
matrix elements5 in the RKKY theory have shown that
the assumptions of the original RKKY model are inade-
quate. However, failure to quantify these effects ade-

quately for realistic band structures throughout the BZ
has meant that the interpretation of many experimental
data must still be based on the free-electron model or
other model band structures. s For comparison with ex-
periment in some cases, it is sufficient to calculate only
the Fourier transform of the indirect interaction and this
calculation has been done for realistic bands in a few

cases. s9 The real space dependence of the interaction is

required in order to calculate thermodynamic properties
of the solid. In the case of Cu a result for the interaction
in real space was obtained by fitting an eight-nearest-
neighbor (NN) model to the Fourier-transform values at
fourteen points in the Brillouin zone. 9 The results of the
direct numerical calculation using the realistic band
structure given below are in much better agreement with

experimental results for the indirect interaction than ei-
ther the free-electron-based RKKY result or the fit to
the Fourier transform for Cu. The improvement appears
to be due to two factors: first, the development of the
numerical method so that realistic band structures and
matrix elements can be used directly, and second, the in-

clusion of higher-energy bands which we show make a
significant contribution to the indirect interaction.

If off-diagonal scattering terms between different mul-

tiplets of the spins are neglected, ' the indirect-exchange
interaction between localized moments can be described
by a Heisenberg-type interactione-- g J(R;,)S,"Si,i)j
where Rtj is the vector joining localized moments. The
interaction constants J(R) can be written

f, (k) [1 —f„(k')1 i Z (k,k')
i 'exp[t (k —k'). R]J R 0 (I)

E„(k')—E„(k)

where f„(k) is the Fermi function corresponding to the band energy E„(k) for wave vector k in the first BZ, 2 (k,k')
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Within each tetrahedron, the integral is treated as the product of the integral of each of the three terms separately.
This allows the rapidly varying term g(k, k', R) to be integrated exactly and this greatly increases the overall conver-

gence obtained. After the energies E„(k) and E„(k') are linearized within their respective tetrahedra, the resulting
expression for the integral of the energy denominator over the tetrahedra ean be evaluated in the general case, but this
procedure is not practicable because of the proliferation of computationally slow terms. For tetrahedra away from the
Fermi surface, it is sufficient to integrate over one tetrahedron and average over the vertices of the second. For cases in

which each tetrahedron has at least one vertex on the Fermi surface, singularities in the integrand may remain after the
first integration. In these cases the second integration is also dealt with analytically. The integration of the slowly

varying matrix element S„„(k,k') is obtained by averaging over the four vertices of each tetrahedron which is

equivalent to the assumption of linearity within each tetrahedron.
It is important to realize that a significant contribution to the RKKY interaction comes from bands well above the

Fermi energy. The RKKY result for free-electron bands below an energy E corresponding to a wave vector k )kF,
where kF is the wave vector at the Fermi energy, is given by

pkF ~k
I(E~,R ) (2z R ) I S I k sin(kR)dk„„k'sin(k'R) [E„(k')—E„(k)j 'dk'. (3)

Numerical integration of Eq. (3) shows that for Cu hav-

ing a free-electron Fermi energy of 7.04 eV, gated the effect of a nonspherical Fermi surface, by con-
structing an artificial band structure yielding a cubic
Fermi surface with rounded corners in the (111) direc-
tions. The calculated indirect interaction showed very
strong anisotropy and decayed very slowly in the (100)
directions. This result is in agreement with the results of
Ref. 3.

Recent interest in low-temperature ordering of nuclear
moments in Cu, ' along with experimental data from
which the indirect-exchange interaction can be de-
duced, ' make Cu an interesting example for the applica-
tion of the present method. The band structure of Cu
was calculated by use of atomic d state and orthogonal-
ized plane-wave (OPW) basis states. ' This band-
structure method has been found to reproduce well the
band structure, momentum density, and Compton-profile
anisotropy of Cu, as determined by experiment or first-
principles calculations. The isotropic indirect-exchange
interaction between Cu nuclei is a result of the Fermi
contact interaction between the s-like band electrons and
the nuclear spins. The expression for the matrix element
in Eq. (1) in this case is

I(E,R„)—I(~,R„)-0.52I (~,R )

for E 23 eV and R„„equal to the NN distance. Un-
like the analytical expressions for the RKKY result,
many previous calculations of the indirect interaction
have ignored higher bands and therefore those results

may have been more indicative of the cutoff chosen than
of the quantity being calculated. The approach that we

shall adopt is to show that the contribution to the in-

direct exchange from higher bands tends to the free-
electron band contributions, so that these can be summed
analytically.

The numerical method described above can be easily
tested by application of it to a free-electron band struc-
ture and comparison of the results with the analytical ex-
pressions first derived by Ruderman and KitteL' A
direct comparison was achieved by inclusion of only en-
ergies up to 23 eV in our numerical program and com-
parison of the result to I(E,R) from Eq. (3) with
E 23 eV. Figure 1 shows that the agreement
achieved is very good out to at least the tenth-nearest
neighbors. The value of IXI used for Fig. 1 is for the
case described below of nuclear moments in Cu. Sepa-
rate confirmation of convergence was obtained by vary-
ing the mesh size.

Having tested the accuracy of our method, we investi-

Is„„(k,k') I'

-o'(«ggNPA~3)'I v.i(0) I'I v.g(0) I',

where g and g~ are the electron and isotope-averaged

is the exchange matrix element whose form depends on the type of moment being considered, 0 is the volume of the
real-space unit cell, and the summation extends over all bands n, n'. The main obstacle to a direct numerical calcula-
tion of Eq. (1) is the convergence of the double summation over reciprocal space of the rapidly varying function. The
problem is more difficult than the calculation of similar quantities such as the susceptibility" or the Fourier transform
of the indirect-exchange interaction which require only a single summation.

The method we have used to evaluate the double, reciprocal-space summation of Eq. (1) is based on the linear
tetrahedron method. "' A mesh of 256 tetrahedra is established in the irreducible wedge of the BZ and at each of the

grid points the energy eigenvalues and eigenfunctions are calculated. After the summation of the exponential term over

the star of k and the star of k', to give g (k,k', R), Eq. (1) can be rewritten as a double summation over tetrahedra r and
t' in the irreducible wedge of the first BZ of a double integration over each pair of tetrahedra:

J(R) (2x) 6g g d3k, d k'g(k, k',R)[E„(k)—E„(k')1 '
I S (k,k')

I
. (2)

t t
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TABLE I. The indirect-exchange interaction constants
J(R) for the nth-nearest neighbors in Cu. The standard free-
electron RKKY result is compared with our result obtained
from a realistic band structure for Cu.

Neighbor n

Direction
J(R& (nK. &

RKKY This Work

-8'

1

2
3

5

6
7
8
9
9
10

(1,0,0)

(l, l,o)

(l, l, l)

(2,0,0)

(2, 1,0)

—8.20
+3.65
—2.03
—0.26
+1.04
+0.17
—0.58
-0.34
+0.19
+0.19
+0.37

—22.60
+10.87
—3.27
+4.38
+2.93
—0.14
—0.56
—2.07
+0.25
+0.43
+0.65

Ii

4
I I I I I I

3 5 6 7 8
R [5]

FIG. l. Indirect-exchange interaction constant J(R) as a
function of the inter-moment separation R for the free-electron
band structure of Cu, obtained by inclusion of bands up to an
energy E E~ as indicated. There is excellent agreement
between the results of the numerical integration (circles) and
the RKKY result for each energy range.

( i y(0) i 2&E, -3(hH/H)//8rrMZ„

where, for Cu, the atomic mass M 63, the Knight
shift's ~/H 2.32x10 s, and the electron-spin sus-
ceptibility' Z, 1.08 x 10 emu/g, one obtains

nuclear g values, p and pjv are the Bohr and nuclear
magnetons, and ) y„a(0) ( is the electron number densi-
ty at the nucleus for electrons in band n with wave vector
k. Since the d-orbital component of the wave function
does not contribute to the Fermi contact term, we have

I V.i(0) I

'-
I c.t, I

'
I V o~w(0) I

',

where
~ c„~~ 2 is the fraction of OPW content in the wave

function with wave vector k. The value of the OPW con-
tribution

~ tiropw(0) ~
was obtained from the experimen-

tal value of the Knight shift for Cu as follows. The aver-
age of the contact-term part of band-state wave function
over the Fermi surface is

& I y(0) I '&E„-& I ~.t I '&E„ I yopw(0) I

and a value of &
~ c„q~ &E„0.75 was found for our band

structure. With use of

&
~
y(D)

~ &E„2.44x10 ' m ' and therefore

& I Wopw(0) I
'& 3 24 x 10 "m

As remarked above, it is necessary to include bands up
to a very high energy to obtain a result for J(R) in Eq.
(1) that has converged. We find that the contributions
from bands above the ninth Cu band are very close to
those from the corresponding free-electron bands.
Therefore, we have obtained the final result by adding
the analytical RKKY result for the infinite energy range
to the difference, from our numerical calculations, be-
tween the contributions from the first nine realistic Cu
bands and from the first nine free-electron Cu bands.

The values of the indirect-exchange interaction for the
first ten nearest neighbors in Cu are given in Table I and
compared with the free-electron RKKY values which
were obtained from Eq. (3) with E ~ after inclusion
of the matrix element contribution from Eq. (4). The
value of ( llew„~(0) ( for the free-electron bands was also
obtained by comparison with the Knight shift for Cu.

The results obtained for J(R) can be compared with
experiment by use of the dimensionless quantity
R g;J(R;)/pn(gNpN) p which has been determined
from low-temperature nuclear magnetic resonance mea-
surements'4 on Cu where p is the atomic number density.
The advantage of the use of the quantity R is that it de-
pends only on the indirect exchange interaction and not
the direct interaction between the nuclear spins. The
values of the individual values of the J(R;) have not
been determined from experiment but R is a sensitive
test because it depends on the differences between the
large positive and negative values of the J(R;) for the
different neighbors. A previous theoretical value of R
for Cu, which was obtained by summation of over eight
nearest neighbors and only the lowest energy bands, was
R —0.34. We obtain R —0.43 for eight nearest
neighbors and all energies compared with the experimen-
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tal value' of —0.42+' 0.05. The corresponding RKKY
value is R —0.2$. Since the indirect exchange is oscil-
latory and falls off saith distance, and since eight nearest
neighbors completes the second cycle of oscillation, we

expect that our value would remain within the experi-
mental error of the experimental result if all NN interac-
tions ~ere included. The agreement ~ith experiment is

very satisfactory but the inclusion of more NN shells and
the effect of improved band-structure models needs to be
investigated. It may also be important to consider the
effect of many-electron interactions both on the magni-
tude of J(R) as calculated in its dependence on

i y„k(0) i and on the mechanism of the interaction it-
self's as expressed in Eq. (I). For each of the values

quoted above, the normalization via the Knight shift may
have compensated for the former effect.

We have shown that it is possible to calculate the
indirect-exchange interaction for real band structures.
Since the technique reproduces the analytical result for
free-electron bands with high precision, the results for
other band structures can be accepted with confidence.
One important result is that J(R) is dependent on the
direction as well as the magnitude of the intermoment
distance R with the possibility of enhancement of the in-

teraction in certain directions. As Table I demonstrates
for Cu, the consequences of the real band structure in

metals will include changes in the relative magnitudes of
the interactions as well as the overall magnitude of the
interaction for all neighbors. It has been shown here
that the overall magnitude calculated from the real band
structure for Cu is in better agreement with experiment
than the RKKY result. The values of J(R) found herein
partially determine the ordering temperature and the ar-
rangement of the nuclear spina in Cu. The increased
overall magnitude of the effect might be expected to lead
to a higher ordering temperature but the ground-state
properties are sensitive functions of the space depen-

dence of the interaction' which we find to be signifi-
cantly different from the RKKY result used in the past
to predict the ordering temperature and ground-state
configurations.
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