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Physical Realization of the Parity Anomaly in Condenseti Matter Physics

Eduardo Fradkin and Elbio Dagotto

Department of Physics, Uniuersity of Illinois at Urbana Ch-ampaign, Urbana, Illinois 61801

and

Darnel Boyanovsky
Stanford Linear Accelerator Center, Stanford, California 94305

(Received 30 June 19$6)

We show that a PbTe-type narrow-gap semiconductor with an antiphase boundary (or domain wall)
has currents of abnormal parity and induced fractional charges. A model is introduced which reduces
the problem to the physics of s Dirac equation with a soliton in background electric and magnetic fields.
%e show that this system is a physical realization of the parity anomaly.
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In the past few years topological and macroscopic
quantum effects have attracted considerable attention in

condensed matter physics. Perhaps the most famous
case is the quantum Hall effect, in both its integral and
fractional forms. ' At the same time the phenomenon of
the parity anomaly in (2+1)-dimensional quantum elec-
trodynamics (@ED)2+i was discovered within the frame-
work of field theory. Several attempts have been made
to find analogs of the parity anomaly in condensed
matter systems. It was first proposed that the integral
quantum Hall effect may be related to the parity anoma-

ly in (QED)2+i. It was later shown that, on the basis
of symmetry, they are quite different phenomena. ss

Semenoff recently proposed the study of "two-dimen-
sional graphite" as a way to exhibit effects of the parity
anomaly. He showed that the abnormal-parity current
of (@ED)2+i is canceled as a result of the pervasive
fermion-doubling problem. Since interlayer couplings
in actual graphite destroy the analog relativistic behavior
of the electrons, his analysis may only hold for a system
with just one layer.

In this paper we point out the existence of a lattice
system in three dimensions which does exhibit the parity
anomaly of @ED in two dimensions. We consider a
narrow-gap semiconductor of the PbTe type. These sys-
tems have a rocksalt structure with the gap between the
conduction and valence bands closest at the L points of
the Brillouin zone. This feature is the consequence of
the strong spin-orbit interaction. Next we consider the
effects of an antiphase boundary (or domain wall) on the
electronic states. For simplicity consider a wall on the
(001) axis. We show that in the presence of the wall a

number of surface states appear ("zero modes" ). For a
uniform magnetic field perpendicular to the wall, a net
charge is accumulated on the wall. If a uniform electric
field parallel to the wall is applied a current of abnor-
mal parity is shown to exist. These currents are indepen
dent of the sign of the magnetic field and should be ob-
servable in a Hall-type experiment as currents that do
not change sign when B —B.

From a formal point of view our analysis relies on the
fact that the states close to the Fermi energy of a
narrow-gap semiconductor with an antiphase boundary
are equivalent to a system of four species of massive rela-
tivistic fermions in the background of a scalar soliton in

3+ 1 dimensions. Qur analysis is then complementary to
the seminal work of Callan and Harvey'e who considered
a (2+1)-dimensional theory with a scalar soliton and a
(3+1)-dimensional theory with a string. In both cases
there is an axial anomaly in the Hilbert space of the
states on the defect. In a recent paper Volkov and Pan-
kratov' proposed a similar analogy for a PbTe-SnTe
heterojunction. " There are also amusing analogies be-
tween this problem and the quasiparticle currents in the
A phase of He with a texture. '2

Consider first a phenomenological tight-binding model
which describes the electronic states that nearly cross at
the L points. Let us consider first a system without a
wall. The Pb atoms then sit at one sublattice of the
rocksalt "cubic" structure and the Te atoms at the sur-
rounding sites. If we neglect the effects of the other
bands we can write a simple tight-binding model with
two orbitals per site (spins up and down) with a spin-
dependent hopping term which represents the spin-orbit
interaction. We write

H - g Tqf(r)o„.sy, (r+e„)+H.c.+ g ~(—1) +«+'qt(r)y. (r), (1)
t p 1,23 r,e
a,P

where p, (r) destroys an electron of spin a at r, fe„J are nearest-neighbor lattice vectors, and 4r„l are the three Pauli
matrices. %'e have assumed that one type of atoms sit at the sublattice x+y+z even, with site energy +M and that
the other type sit at the sublattice x+y+z odd, with site energy —M. T is a hopping amplitude. It is easy to show
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that the single-particle spectrum of this system is

&/2

E(k) ~ M +T g cos k„
p 1

The gap is smallest at the I. points of the Brioullin zone, (~ x/2, + n/2, + z/2), and equals 2M.
It is easy to introduce a domain wall into this system. We want to exchange Pb atoms with Te atoms, say, to the

right of the wall. This is accomplished by our writing a z-dependent site term M(z) with the property lim, ~ M(z)
~ M. For a sharp wall M(z) is a step function. After spin diagonalization, and for appropriate choice of phases, we

can show that the Hamiltonian of Eq. (1) is the same as the Hamiltonian of two decoupled Kogut-Susskind fermions, a
particular way of discretizing the Dirac equation. '3 Thus we write

and the Hamiltonian now is

H gT [yt(r)i [y,(r+i~) —yr, (r —e~)] —yt(r)( —1)"+ [y,(r+e2)+ yr, (r —iz)]
r,a

+ yt(r)i ( —1)'+ [y,(r+i3) —y, (r —e3)]]++M(z)(—1)"+~+'yt(r) y, (r).
r,a

H-g

From the results of Ref. 13 it is easy to show that, for states near the Fermi energy, it is possible to write Eq. (4) in the
standard continuum form with two species (four including spin) of Dirac fermions,

d x [ri~tig Vri, +X~ti a VX,+m(z) ri~tPrig+m (z)X~tPX,], (5)

where a,p are the Dirac matrices, ri and X are the two
species of fermions, and m(z) M(z)/T. The eight
fields needed to make up two Dirac fermions are linear
combinations of amplitudes on the sites of a cube. "
What is crucial for our results is that the mass term
m(z) has the same sign for al/ species (and spin orienta-
tions). While this is possible for fermions in three di-
mensions, this is not the case in two dimensions. Two-
dimensional lattice fermions have a continuum limit with
two species of two-component Dirac fermions with oppo-
site masses and hence opposite parity. This is a conse-
quence of the inversion symmetry of any Bravais lattice
in two space dimensions. '~

Let us consider the states in the system described by
Eq. (5) first without an electromagnetic field. Since all
four species couple to the soliton in the same way we
need to consider a problem with just one species and as-
sume a fourfold degeneracy of the states. We will com-
ment below on the effects of various degeneracy-lifting
perturbations.

(i) Zero electromagnetic field It is easy .—to solve for
the states in a background of a soliton. Let ri, (x) be a
four-component spin. The Dirac equation in the back-
ground of a soliton along the z direction is

40 —m(z)]q(x) -0,
with use of the standard Bjorken-Drell notation. ' The
symmetry of this Hamiltonian suggests that we look for
factorized solutions of the form

ri, (x) -y, (x~)f(z),

where p, (x~) is a four-spin and a function of the x,y
coordinates and f(z) is a scalar function of z. We now

the solution of which is
p OO

f(z) f(0)exp —
&

dz'm(z') .

The requirement that ri be a solution of Eq. (6) forces

(10)

i O~y(x~) -0
to be satisfied (with use of an obvious notation). Equa-
tion (11) says that the modes bound to the wall are
massless and the constraint equation (8) means that
there are only two components. This is precisely a mass-
less Dirac-Weyl fermion in 2+1 space-time dimensions.
The other states can be found with similar arguments.
There are continuum bulk states [i.e., delocalized with a
gap of the order of m(~)] and possibly other massive
bound states depending on the precise profile of the wall.
For a sharp wall only the "zero modes" found above sur-
vive. These zero modes are closely related to the zero
modes or midgap states of one-dimensional theories'
with solitons and in systems such as polyacetylene. Fol-
lowing the one-dimensional analogy it is natural to ask if
the filled Fermi sea of our problem has fractional charge.
General arguments, valid in the one-dimensional case, as
well as in our case, indicate that the charge Q induced by

i

look for solutions which are normalizable (i.e., square in-
tegrable) in the z direction. This last requirement im-
plies that

y3y(x~) - iy(x~)—

for m(z) ~, + +m )0, and

[—tl, —m(z)]f(z) 0,
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the wall is the spectral asymmetry' '
(12)Q - ——,' e „[p~(E)—p~( —E)]dE,

where prr(E) is the density of states at energy E in the
presence of a wall. The fact that Eq. (5) has particle-
hole symmetry and that the zero modes have a vanishing
density of states implies that Q 0 in the absence of
external electromagnetic fields.

(ii) Nonzero electromagnetic fields T.—he presence of
external static magnetic and/or electric fields drastically

alters the situation. Consider first the case of a constant
uniform magnetic field of strength 8 pointing in the z
direction. Equation (6) now is

[i 0 —(e/e)A —rn(z)]ri(x) -0, (13)

where the vector potential A„equals (0,0,8x,0) in the
Landau gauge. The point here is that the solutions of
Eq. (13) (i.e., the relativistic Landau levels) appear in
pairs of energies + E (particle-hole symmetry) but there
is a set of unpaired zero-energy modes, i.e., Landau lev-
els with zero energy. Their wave functions are

t)p(x) - exp—0
lyky

~o
dz' —m(z') exp

lrt
(x —xo)

e8
2 c (14)

with degeneracy 4(8A/2ir)e/l1c (where A is the area of
the wall), when we take into account the fourfold degen-
eracy. The spectrum is still symmetric around E 0.
Thus Eqs. (12) and (14) imply that the induced charge
is Q (e/2)No, where No is the number of zero modes.
Using the degeneracy of the lowest Landau level we get

Q/~ - —(8/4n)(e'/ae) x4

for the charge (per unit area) induced by the wall. No-
tice that in Eq. (15) 8 appears with its sign. This can be
seen by our adding a small term that breaks the
particle-hole symmetry (see Refs. 5, 6, and 14) in Eq.
(5). The sign of 8 determines which zero modes are
normalizable. 3 This charge is localized within a length
scale (-I/rn(oo) from the wall. If a nonzero electric
field E parallel to the wall is applied, say along the y
direction, there is an induced current in the x direction
We can motivate this result by noting that if we go to a
reference frame that moves along the x direction with
velocity v, cE/8, there is an electric field E-(v/c)
x B (in the y direction) but a current in the x direction
(charge flow),

J"-(4ez/b)Z, /4n.

These "quasi Hall currents" (or, more precisely, Chern-
Simons currents) do not depend on the magnetic field.
For 8 0, Eq. (16) gives the abnormal parity contribu-
tion to the current induced by a weak loca(ized electric
field. This expression can be computed in perturbation
theory. ' Indeed, notice that Eq. (16) does nor de-
pend on the sign of 8 because Q in Eq. (15) changes sign
with 8. This is unlike the ordinary Hall effect where Eq.
(16) would contain a factor of sgn(8). These Chern-
Simons currents arise from the properties of the "Dirac
spin" of the solution given by Eqs. (10) and (11). In
fact this suggests an interesting way for detection of
these abnormal currents with the same experimental set-
tings as in the Hall effect. If we consider crossed electric
and magnetic fields, Jc s does not change sign ~hen

8 —8, unlike the Hall currents. Note that the
charge and current [Eqs. (15) and (16)] are components
of a four-vector. It can be shown that this result is a
generalization of the Callan-Harvey formula for the case
of a scalar domain wall in 3+1 dimensions. 'o The sign
of the induced charge Q and of the current is determined
by the precise way that the Fermi sea is filled: The sign
in Eq. (15) is minus (plus) for a filled (empty) zero
mode. Thus our results predict that in a PbTe crystal
with an antiphase boundary there is an induced charge
per unit wall area (in the presence of a magnetic field),
given by Eq. (15), and an odd-parity current [Eq. (16)]
perpendicular to the electric field (even in the limit
8-0).

Finally some remarks about degeneracy-lifting pertur-
bations. The first example is a Zeeman term. It can be
shown that this term produces a (very small) splitting of
the zero modes thus canceling the effect. This can be
compensated by the addition of extra electrons (doping).
Some PbTe-type narrow-gap semiconductors exhibit
Peierls distortions of various types. A Peierls distortion
along the (111)axis can be shown to break particle-hole
symmetry. The result is that the zero mode is either
lowered or raised depending on which Peierls ground
state the system is. This has either all zero modes empty
or occupied. Still there are other more complicated
cases. '
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