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Traveling and Standing Waves in Binary-Fluid Convection in Finite Geometries
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The effect of finite geometry on the competition between traveling waves and standing waves in sys-
tems with a Hopf bifurcation to a state with spatial structure is considered in the linear and weakly non-

linear regimes. The spatial structure observed by Kolodner et al. in binary-fluid convection is explained
in terms of the reflection of the linear traveling ~aves. The reflection coefficient is calculated, and is
found to go to zero as the frequency of the waves becomes small. The pattern expected in a saturated
nonlinear state is discussed.

PACS numbers: 4"I.25.-c

Convection in binary-fluid mixtures provides a rich
system for the study of nonequilibrium phenomena. For
example, the first instability to a state with spatial
structure —the convection rolls —varies from a station-
ary bifurcation to an oscillatory (Hopf) bifurcation as a
parameter of the fluid is changed. ' Questions in pattern
formation in a dynamical context may be investigated in

a well-controlled fluid system. In addition, there is the
possibility of interesting dynamical behavior near the
stationary-oscillatory crossover point. ' (I will follow
the general usage and call this point the codimension-two
point. ) There has been a flurry of experiments to inves-

tigate these questions. However, one of the simplest
theoretical questions has not yet been addressed pro-
perly —the spatial structure of the periodic solutions in a
finite lateral geometry. In a laterally infinite system
standing waves are thought to be unstable to traveling
waves. There is, however, a considerable literature2's on
the properties of standing-wave solutions, at first sight
the natural solutions in a finite geometry. The present
work addresses the question of the competition between
traveling waves and standing waves in finite geometries
in both the linear and weakly nonlinear situations.

I discuss the competition in terms of a slightly simpli-
fied model system, commonly used in the literature.
This gives us a rather complete understanding of the re-
cent experiments of Kolodner et a/. : In particular I
find that the length scale of variation of the envelope of
the traveling waves observed there should scale with the
length of the system, and gives us information on the re-
flection of the waves at the lateral boundaries. I calcu-
late the reflection coefficient numerically for the model
system, and obtain an analytic expression for small oscil-
lation frequencies. The experiment apparently may be
understood in a linear theory. In addition I discuss the
use of envelope equations —a very successful approach
to stationary convection near threshold —in the weakly
nonlinear region. Only where the propagation speed
(group velocity) is small do the envelope equations yield
a complete description. The steady solutions in this limit
are briefly discussed.

In some beautiful experiments in alcohol-water mix-
tures Kolodner et al. s have studied the oscillatory con-
vection state over the long transient period when the am-
plitude is growing exponentially, indicating that non-
linear effects are playing a minor role. They observe a
pattern of straight rolls perpendicular to the long dimen-
sion of the rectangular cell. In the center the pattern is a
superposition of roughly equal amplitudes of leftward
and rightward traveling waves. Towards the ends one or
other of the waves dominates. The authors parametrize
the disturbance in terms of an amplitude, which I will
call Z(x, t ):

Z(x, t ) Zoe"'[et'"cos(kx —0 t )
—e &'c so( kx+Ot)] (1).

The length scale P
' is surprisingly long —about 12.5d,

with d the cell depth, for separation coefficient
—O.S7.

We can understand this form in terms of leftward and
rightward traveling waves with amplitudes Ztt and Zz..
Z~Ztt+Zz+c. c. with

Z a ek(+'x st)eetl~oe-i(+'kx —QT)

connected by reflecting boundary conditions at the ends
x ~ —,

' I, e.g.,

ZL, (—,' l) rZJt(2 l),
where r ( r ( exp(ip, ) is the reflection coefficient.
Equation (2) is comprised of the basic traveling waves
with wave number k and frequency 0 modulated by
slowly varying amplitudes Att g, (x,t ).

Here s is the group velocity d Q(k) jdk, so that in a
comoving frame the growth rate is the characteristic
s 'zo with s approximately equal to e, given in terms of
the Rayleigh number R and its value R~ at the oscillato-
ry threshold by s (R —R~)/R~. The exponential
dependence on the cornoving coordinates x ~st is con-
firrned by the linear analysis of the envelope equations
(see below). Equations (2) and (3) reproduce the form
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observed with the identifications y szn —As for the

temporal growth rate and P A, for the spatial envelope

with X '- —i/In(I r I ). Notice that the length scale is

predicted to scale simply with the length of the system,
and gives direct information on the reflection amplitude.
The experimental value of A at W —0.57 yields Ir I

0.31. Note also that there is a shift in the onset

(y=0), given by ~ Assn, that is linear in 1 and

dependent on r: The growth of the wave during a pas-

sage over the length of the ceil must overcome the reduc-

tion in amplitude due to reflection. Perfect reflection
would give standing waves in the linear regime.

I have calculated the reflection coefficient expected at
a rigid side wall for the simplified model which uses

boundary conditions at the upper and lower plates corre-
sponding to free fluid slip and plates that are permeable
to the finite- wave-number concentration perturba-
tions. 'n The equations for the velocity field u (vertical
component w), pressure field P, temperature perturba-
tion 8, and impurity concentration perturbation c in the
usual "Boussinesq" approximation" are

u+(u V)u —VP+rr(8 c)z—+oV u,

8+(u V)8 Rw+V 8,

i +(u V)c —R+w+LV2c+qrLV28,

V u 0

The equations have been rendered dimensionless in the

usual way (lengths scaled with the depth, times with the
vertical thermal diffusion time), and the properties of the

system are parametrized by the Prandtl number o, the
Lewis number L, and the separation coefficient %', to-

gether with the Rayleigh number R. The Lewis number,

the ratio of impurity diffusivity to thermal diffusivity, is

typically very small, and we may drop terms proportional
to L in Eq. (6). In the linear regime, and for an oscilla-

tory solution exp[ i 0t], c is—then algebraically related
to w, the vertical velocity. We are interested in the
behavior near the threshold R~ (27z4/4) (1+a) (1
+cr+crW) ' to the oscillatory states with frequency
0 (9rr /4) ( —Oo ) (1+cr+ crO) ' giving a distur-

bance in the bulk of the form

(w, 8,c ); (wn, 8n, cn)sinrrz exp[i (kx —0r )],

with k rr/J2 and wn, 8n,cn numbers given by solving for
the eigenvectors of Eqs. (4)-(7)

To calculate the reflection coefficient, consider the
wave equation (8) incident from left on a rigid side wall.

In a boundary layer region of thickness —1, exponential-

ly decaying solutions are excited so as to satisfy the fluid

boundary conditions w 0 and u 0 and the thermal
conditions (e.g., 8 0 for good conductors, 8„8 0 for in-

sulators). ' In addition a reflected wave of amplitude r
is excited. For the free-slip permeable boundary condi-
tions the equations are separable, and we need only solve

Note that, more generally, r'3 the coefficients of each of
the terms would be complex and s, the group velocity,
would be —1. The solutions of Eqs. (4)-(7) in finite
geometries then vary on an —1 length scale that is in-

consistent with the slow variation assumed: Equations
(9) do not yield a complete solution in this general case.
Also note that a simple envelope equation for a spatially
varying standing wave (i.e., a single equation for

Ag+AL, ) cannot be written down because of the propa-
gation terms. However, on approach to codimension-two

point where 0 goes to zero as ( —%')'iz, the group velo-

city s becomes small, and the solutions vary on a slow

length scale. In this limit also the imaginary parts of the
coefficients become small. Equations (9) then allow us

to study oscillatory convection in finite boxes in both the
linear and nonlinear regimes. '

The envelope equations must also be supplemented by
boundary conditions that reflect the consequences on Az
and AL, of the boundary-layer region. For L 0 and

small 0 these take the form (at x +' —,
' I )

Ag —a~Ay —p~AL, 0,
(10)

AL,
—a ~AL —p ~Ay -0,

TABLE I. Values of the magnitude of the reflection coeffi-
cient I r

I at rigid side walls of good or bad thermal conductivi-

ty (relative to the fluid). The first two values are those used in

Ref. 6; the remainder show the general trends. For
( —%') ' » o » 1 there is very little dependence on the Prandtl
number.

Reflection coefficient I r I

Good conductor Bad conductor

14.9
9.8

10.0
10.0
10.0
10.0
10.0

—0.58
—0.29
—0.80
—0.60
—0.40
—0.20
—10-4

0.31
0.18
0.458
0.327
0.230
0.144

3.0~10 '

0.26
0.26
0.245
0.272
0.274
0.246

9.9x10-'

algebraic equations for the exponential decay rates of
solutions varying as sinrrz. Values of I r I predicted for
various values of o and 9' and for side walls of good and

bad thermal conductors are shown in Table I.
It is apparent that as —%' approaches zero, and the

frequency of the oscillations becomes small, the reflec-
tion coefficient also becomes small. %e can analyze this
limit analytically in terms of envelope equations for the
slow amplitudes Ag(x, i),AL(x, t) which then take the
form

A„-. (sA, +g)a,'A, ) —s a,A,
—gi I A~ I

'A~ —
g2 I AL I 'A~,

(9)
A, -rn '(sA, +g(82A, )+sa„A,
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with a~ —a' a and p+- —p' p with a and p
identical to the coefficients already calculated for sta-
tionary convection in pure fluids. ' The primes in Eq.
(10) denote x derivatives.

The reflection coefficient of linear waves is now easily
calculated to give r = —P"sou/g Using the values cal-
culated from the linearized fluid equations, i.e., ru
-4(1+o ')/(3rr ) and Q -8/(3x') and s - l2x'
xcr( —W)/(1+a+vV)]'~, and the values of p from
Brand, Hohenberg, and Steinberg, ' i.e., ( p ( 0.431 for
poor conductors and (p~ 0.130 for good conductors,
we can calculate the reflection coefficient. For

'»o»1 the dependence on the Prandtl number
disappears, and ( r j =0.96( —9')'i for poor conductors
and 0.29(W)'iz for good conductors. Note that ~r ~

varies proportional to the frequency 0 as 0 0, and we

expect this behavior to be evident with the realistic boun-

dary conditions, at least for not too small frequencies.
I have analyzed the situation of weakly nonlinear

waves in the low-frequency limit, assuming g~ & 0 (i.e.,
the amplitude of the traveling waves saturates) and

g2/g~ & 2 (standing waves in the bulk are unstable to
traveling waves'3). It is convenient to rescale the equa-
tions to eliminate redundant constants (X a'~zx/gu,

T-e'r/zo, a~~-e '"gP'a„z, s-sa '"iu/gu, and

g2 g2/g~). The boundary conditions are as Eq. (10)
with A A, a,p a,p, and a a'i a/gu, p a'i p/(0
both small numbers. This situation may apply to the
slowly moving waves observed at larger amplitudes in the
bulk fluid convection ("overturning convection"s), to
binary fluid convection in a porous medium near the
codimension-two point, 's and qualitatively to the general
situation and other systems.

I have investigated the stationary solutions of Eqs. (9),
corresponding to simply periodic solutions of the original
equations, using a finite-difference Newton-Raphson
scheme. (Work on the direct time evolution is in pro-
gress, and will be reported elsewhere. ) Boundary condi-
tions Eq. (10) are used at x ——,'

l, and these, or condi-
tions matching to saturated solutions in a semifinite sys-
tem, at x + —,' l. I take a,p to be real for simplicity, so
that Agg, may be taken real. Here I discuss the main
qualitative conclusions.

From work on propagating fronts in the Fisher equa-
tion' the value s 2 might be anticipated to be a critical
value, and different behaviors are indeed apparent on ei-
ther side (although the exact boundary value may also
depend on a,p). A typical solution in a large box for
s & 2 is shown at the top of Fig. 1. Notice the predomi-
nance of one component, here the one moving to positive
x, with a small reflected amplitude of the second com-
ponent at x 2 I that is suppressed in the bulk by the
nonlinear terms. Another class of solutions exists, with

Ag large for x & 0 and AL, large for x (0 [cf. the linear
solution Eq. (1)]. In either case traveling waves are ap-
parent over most of the length, except for short healing
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FIG. 1. Comparison of the amplitudes A~(X) and Aq(X)
for s (2 (upper figure) and X&2 (lower figure). In both
cases the rightward moving wave Ag is dominant. The param-
eters used are l 20 and g 4, with X 1.0, a p 0.30 in the
upper figure and s 2.2, a P 0.18 in the lower figure.

regions at the ends, or at the junction of the two sets.
The amplitude saturates in the bulk, and the values Agg,
at the boundaries and the lengths over which the ampli-
tudes are suppressed are independent of the length for
long systems. A saturated nonlinear state is a solution in

the semi-infinite system.
For s &2 the situation is quite different. With bound-

ary conditions at x —,
' l matching to the semi-infinite

system no steady-state solution is found: The distur-
bance apparently propagates away to large distances. A
steady-state solution exists in a large box, but now with

the reflected AL, wave necessary to excite, on a second
reflection at x ——,

' l, the A~ wave. The magnitude of
A~ I, at the growth boundary x -—

2 l consequently de-

creases rapidly, presumably exponentially, as the length
grows, and the distance over which Ag is small scales
with the size of the system. The convection is suppressed
over a large fraction of the cell. The growth of Ag away
from x ——,

' l is as exp(x/s) and becomes slow for
large s. (By contrast, the decay rate at x + —,'l be-
comes fast as s, and cannot be treated with the envelope
equations for large s. ) Since the amplitude grows slowly
from an exponentially small value near the x = —2I
boundary, by analogy with our experience of the en-
velope equation for stationary bifurcations, ' ' I would

expect a rather precise wave-number selection in this
dynamical situation. This requires further investigation.

The author thanks A. Karma for useful discussions.
This work was supported under Division of Materials

2937



VOLUME 57, NUMaER 23 PHYSICAL REVIEW LETTERS 8 DECEMBER 1986

Research Grant No. DMR-8412543 by the National
Science Foundation.

'The theoretical assertion that this is true in bulk fluid mix-
tures is based on approximate calculations, or the simple model
system used by D. T. J. Hurle and E. Jakeman, J. Fluid Mech.
47, 667 (1971); R. S. Schechter, M. G. Velarde, and J. K.
Platten, in Advances in Chemica/ Physics, edited by I. Prigo™
gine and S. A. Rice (Wiley, New York, 1974), VoL 26, p. 265;
D. Gutkowicz-Krusin, M. A. Collins, and J. Ross, Phys. Fluids
22, 145 (1979); and H. R. Brand, P. C. Hohenberg, and
V. Steinberg, Phys. Rev. A 30, 2548 (1984).

28rand, Hohenberg, and Steinberg, Ref. 1.
3B. J. A. Zielinska, D, Mukamel, V. Steinberg, and S. Fish-

man, Phys. Rev. A 30, 702 (1985).
4I. Rehberg and G. Ahlers, Phys. Rev. Lett. 55, 500 (1985);

H. Gao and R. P. Behringer, Bull. Am. Phys. Soc. 30, 1719
(1985); R. W. Walden, P. Kolodner, A. Passner, and C. M.
Surko, Phys. Rev. Lett. 55, 496 (1985).

5L. N. Da Costa, E. Knobkch, and N. O. %eiss, J. Fluid
Mech. 25, 109 (1981); D. R. Moore, J. Toomre, E. Knobloch,
and N. O. Weiss, Nature (London) 303, 663 (1983).

6P. Kolodner, A. Passner, C. M. Surko, and R. %. %alden,
Phys. Rev. Lett. 56, 2621 (1986).

7A. C. Newell, in Synergetics, edited by H. Haken
(Springer, New York, 1977), Vol. 2.

SFor the model system described belo~ the usual lowest-
order nonlinear saturating term is identically zero for traveling
waves [C. S. Bretherton and E. A. Spiegel, Phys. Lett. 96A,
152 (1983)]. Furthermore, a mode truncation scheme for trav-
eling ~aves in this model shows no saturation at small ampli-
tudes near threshold [M. C. Cross, Phys. Lett. A (to be pub-
lished)] in agreement wit/ experiment.

9There is a quadratic shift than can be derived from Eq. (9):
s s+ gQ, 2.

'oAt first sight, permeable boundary conditions seem entirely
unphysical. However, outside a boundary layer of thickness
(L/0)'~2 effective permeable conditions exist.

Hurle and Jakeman, Ref. 1.
'2For I. 0 the concentration boundary condition will again

be satisfied over a very small lateral boundary )ayer and does
not affect the analysis elsewhere.

'3P. Coullet, S. Fauve, and E. Tirapegui, J. Phys. (Paris),
Lett. 46, 787 (1985).

~4A single equation of this form, e.g., for Ag, has been con-
sidered by S. Zaleski, P. Tabeling, and P. Lallemand, Phys.
Rev. A 32, 655 (1985), in the context of Taylor Couette flow.

~5M. C. Cross, P. G. Daniels, P. C. Hohenberg, and E. D.
Siggia, J. Fluid Mech. 127, 155 (1983).

~6H. R. Brand, P. C. Hohenberg, and V. Steinberg, Phys.
Rev. A 27, 591 (1983).

E. Ben-Jacob, H. Brand, G. Dee, L. Kramer, and J. S.
Langer, Physica (Amsterdam) 149, 348 (1985).

' L. Kramer, E. Ben-Jacobs, H. Brand, and M. C. Cross,
Phys. Rev. Lett. 49, 1891 (1981).


