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Quadratic Zeeman Effect for Nonhydrogenic Systems: Application to the Sr and Ba Atoms
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A method has been developed to calculate the spectrum over the I- and n-mixing regimes of an arbi-
trary nonhydrogenic system in an external laboratory-strength magnetic field. The original experimental
results on Sr and Ba are explained in detail for the first time. The importance of quadratic Zeeman
spectroscopy in the quantitative study of atomic structure is made clear.

PACS numbers: 32.60.+i, 31.50.+sr

Garton and Tomkins, ' in 1968, performed the first ex-
periments on atoms in highly excited Rydberg states in

an externally apphed magnetic field. These experiments
have stimulated new developments in both theoretical
and experimental atomic physics because an atom in an
external magnetic field provides the simplest example of
a system where two disparate symmetries compete with
one another. These symmetries are the cylindrical sym-
metry of the applied field and the spherical one of the
Coulomb field. This competition results in a Hamilto-
nian which is nonseparable in any coordinate system.

This Letter reports the first calculations on Rydberg
states of nonhydrogenic atoms in a uniform magnetic
field that permit a detailed comparison with experimen-
tal spectra over the l and n-m-ixing regimes for any
atom.

The approach followed has hinged on two physical
realizations. The first is that for magnetic fields of labo-
ratory strength (5-50 kG or p 10 s to 10 in atomic
units), the quadratic Zeeman potential —,p r2sinz8 can,
up to some radius ro equal to several hundred bohrs
about the nucleus, be completely ignored in comparison
to the potentials arising from the much stronger
electron-nucleus and electron-electron interactions. This
reduces the description of this inner region in the prob-
lem to that appropriate to a conventional multielectron
atom completely free of any externally imposed fields.
The second realization is that in the outer region (which
extends in radial coordinates from ro to ~ and in which
the quadratic Zeeman potential is crucially important),
only one electron of the atom will ever be found. Thus
the Schrodinger equation for the complex atom in this
outer region reduces to the one-electron form already in-

vestigated for hydrogen. These two physically distinct
regions will now each be discussed separately in some
detail.

Since the magnetic field potential is a negligible term
in the HamiItonian over the inner region O~r ~so, we
can acquire wave-function solutions to the Schrodinger
equation there such that each solution corresponds to a
fixed speciTic value of total orbital angular momentum L
and total spin S. To progress further, this inner region
must be divided into two subregions. The innermost of
these, besides encompassing all but one of the atomic

electrons, must also be sufficiently large so that low-

lying excited configurations of the remaining electrons
are entirely contained within it. Over the remaining part
of the inner region the single electron present must, even
for a fixed L, be described by a multicomponent wave
function reflecting the various possible levels of excita-
tion of the residual electrons of the atom. However, by
the boundary of this region all but those components
linked to the ground state of the residual ion will be con-
sidered to have undergone exponential decay and died
away. For Sr and Ba atoms, the ground state of the
residual positive ion is 2S and so for a given L there
remains only a single component corresponding to a
specific value l of the orbital angular momentum of the
single electron.

Near the boundary r ro, where only the Coulomb
potential has significance, this single component can be
written as a linear combination of energy-normalized
regular and irregular Coulomb functions, f~(r) and
gI(r), respectively; viz. ,

Pi(r) fI (r) + tan(npl )gi (r)

The quantity pl is the energy-dependent quantum defect
and parametrizes the energy-dependent coupling be-
tween this component and those that die off exponential-
ly before ro is reached. Generally for l & 4, pi is approx-
imately zero.

It is appropriate to calculate solutions in the inner re-
gion for all values of L allowed by parity considerations,
each time gaining a component of the form (1) on the
outer boundary. Before long, however, there is some
Lm~ with a corresponding lm, „ in (1) such that for
I & lm„ the angular momentum barrier is so large that
the regular Coulomb function fj(r) evaluated at r ro is
completely negligible. This provides a valuable restric-
tion on the amount of inner-region calculation necessary.

The true inner-region wave function that matches on
to the wave function in the outer region is composed
from all these differing I contributions. A vector F of ra-
dial parts can thus be written such that

F P A, (2)
where P is a diagonal matrix with elements Pi(r) of Eq.
(1) and A is a vector of numbers specifying the relative
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weighting of each P((r) in the true wave function.
This weighting is governed by the direct action of the

magnetic field potential in the outer region where the
problem has been reduced to one electron moving under
the combined influence of Coulomb and magnetic fields.
Thus previous work on the hydrogen atom is relevant.
The Hamiltonian over the region roar ~ takes a form
identical to that for hydrogen which, in atomic units, is

H ——,' V —r '+ Pl, +—,'
P r sin 8, (3)

where P eh8/2me and the magnetic field vector B is
chosen to point along the z axis. This Hamiltonian is
symmetric with respect to coordinate inversion and so
parity is a good quantum number. In addition, since the
potential does not depend on the azimuthal angle p, it is
also diagonal in the magnetic quantum number m.

In solving the corresponding Schrodinger equation in
this outer region, we have chosen a method which is a
variant of the R-matrix approach first employed in
atomic physics by Burke, Hibbert, and Robb. 3 This rests
on the ability of a finite number of suitably chosen basis
functions to represent the wave function adequately over
a limited region of space. In our work such basis func-
tions have been obtained by diagonalization of the Ham-
iltonian (plus a surface term that arises because integra-
tion is confined to the outer region) over a set of linearly
independent Sturmian functions S„((r) satisfying arbi
trary boundary conditions at r ro.

The basis functions have energies Ek and are denoted
by yk, where

yk -g C'O'J'(r) I'( (f(,e)
nI

(4a)

where n is an integer label with n & i and g is a positive
constant common to the basis.

A direct result of the R-matrix procedure (see Burke
and Robb ) is that the R matrix, which relates the vector
F of radial wave-function components given by Eq. (2)
to the radial derivative of this vector on the boundary
r ro, viz. ,

F(ro) -R.F'(ro), (6)
can be expressed as

d(k(ro) d( k (ro)
R((

EI, —E

-g(d(k(r) ~( (f),e).

The energies E(, are the eigenvalues and Ck( the eigen-
vector components resulting from the diagonalization.
In turn the Sturmian functions, already exploited advan-
tageously by Clark and Taylor4 in the hydrogen-atom
magnetic field problem, are such that for a given orbital
angular momentum quantum number i each satisfies the
differential equation

d i(l+I) + gn g ~(()( )
dr2 r2 r 4

where E is the total energy of the single last electron in

the outer region and I,„provides the upper limit on
both i and i'. lt should be noted that Eq. (7), for a given
field strength, is independent of the complexity of the
atom in the inner region and once calculated can be used
for an arbitrary atom.

This approach for the outer region has allo~ed us to
use there —with minimal amendment —the computer
programs written by Clark and Taylor to examine the I-
and n-mixing regimes in hydrogen. Some alterations re-
sult from the need to evaluate matrix elements of the
Hamiltonian (3) over the limited radial range from ro to

rather than from 0 to oo. This breaks the selection
rules on label n enjoyed by matrix elements of 1/r and r
in the Sturmian set. Nevertheless the new nonzero in-
tegrals are readily evaluated analytically and the overall
banded structures of the Hamiltonian and overlap ma-
trices remain, albeit with somewhat wider bandwidths
than in the hydrogen problem. Moreover the limited ra-
dial range means that a smaller number of Sturmian
functions is needed. Full details of the methods for these
new integrals will be presented in a future publication.

Once calculations have been performed in the two re-
gions there remains the problem of joining wave func-
tions across the one-electron boundary. This is achieved
by use of Eq. (6) above. Solution and derivative vectors
F(ro) and F'(r()) are provided on the boundary from the
inner-region side while expression (7) for the R matrix
means that this depends entirely on the outer-region cal-
culation. Thus Eq. (6) acts as a matching condition on
the boundary between the regions and will be satisfied
only at certain discrete energies E. On substituting (2)
in (6) we obtain

(P —R P') A 0.

The discrete energies are therefore those at which

det(P —R P') 0

and the vector A is also given by solution of (8) at each
such energy.

In this matching of wave functions on the boundary
r ro we have been able to take full advantage of the ef-
ficient energy search algorithm due to Seaton and the
associated computer program. In Seaton's program, and
indeed in all applications of the R-matrix method before
this one, the R-matrix form (7) has resulted from calcu-
lations in the inner region surrounding the nucleus, and
the vector (2) has been supplied by the outer-region cal-
culation. The inversion of roles has necessitated some
changes to Seaton's program but not of a fundamental
nature.

For each wave function obtained and properly normal-
ized, the coefficient A~ gives the fraction of L 1 char-
acter in it. The oscillator strength linking any such state
to an I. 0 ground state is then simply proportional to

~ A( ~
times the field-free oscillator strength at the ener-
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S«ont~um»s«ption spectrum vs transition wave number from the ground state: (a) field-free spectrum; (b) experimen-

tal densitometer tracing for strontium in a magnetic field of 4.7 T; (c) theoretical photoabsorption spectrum in a field of 4.7 T. The
theoretical results give the absolute oscillator strengths, but for n less than 29 the strongest &ines have been reduced in size to facili-

tate comparison with the nonabsolute experimental measurements.

gy E of that state.
The theory outlined above has, in this first application,

been directed towards the heavy complex atoms Sr and
Ba for which magnetic field experimental data exist. We
have used experimental energies for field-free states in
'P' and 'F' symmetries to determine the relevant pl's
in (1) and experimental valuess for oscillator strengths of
field-free discrete transitions from the '5-component
ground states of these atoms. In general, and especially
for light atoms, these data can be provided by ab initio
calculations using standard methods. This is all that is
required to determine the spectrum in a laboratory mag-
netic field of arbitrary strength.

The calculated results are compared with the experi-
mental measurements of Lu, Tomkins, and Garton on
Sr and Ba in Figs. 1 and 2, respectively. The striking
differences between the Sr and Ba spectra in the pres-
ence of a magnetic field has long been a source of puz-

zlement. [Their field-free spectra are quite similar in

this energy range as evidenced by the frames of Figs.
1(a) and 2(a).] We find that the differences are due to
the perturbers "4d5p" in Sr and "5d8p" in Ba. In zero
field the quantum defects of the 5snp and Ssnf series
in Sr each rise through unity as a result of the
4d5p 'P', 'F' resonances. However this rise occurs
predominantly at low n and the quantum defects of the
5snp and 5snf series are slowly varying at n = 29, being
approximately 0.8 and 0.1, respectively. This results in

the 5snp and 5snf levels being separated from the higher
I's in the n manifold. These levels, in the presence of a
magnetic field, can be associated with the strongest lines
in the spectrum of Fig. 1(b) for n & 29.

In contrast, the 5d8p perturber in Ba lies in the vicini-

ty of the ionization threshold and causes the zero-field
quantum defects of the 6snp and 6snf series to change
with energy in this region. Surprisingly, however, these
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FIG. 2. Barium absorption spectrum vs transition wave number from the ground state: (a) field-free spectrum; (b) experimental

densitometer tracing for barium in a magnetic field of 4.7 T; (c) theoretical photoabsorption spectrum in a field of 4.7 T.
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quantum defects are both approximately zero (modulo
one) in the energy range of interest around n -32. This
fortuitous coincidence explains the hydrogenic-type pat-
tern that is observed in Ba in the presence of a magnetic
field (Fig. 2(b)] in the inter-/- and inter-n-mixing
regions.

The spectrum of Sr in the presence of a magnetic field
should, ho~ever, be more typical of an arbitrary atom
since the Ba spectrum results from an unusual coin-
cidence in value of two important quantum defects.

In passing we point out that as n 29 is approached in
Sr, our calculations indicate a much more drastic redis-
tribution of oscillator strength among levels than do the
vapor experiments. This has important consequences for
the use of magnetic rotation spectroscopy in measuring
oscillator strengths. '

Some qualitative understanding of the spectra of Sr
and Ba near E 0 and above the ionization threshold ex-
ists but as yet no reliable theoretical approach has been
developed to treat this region. The method worked out
here for photoabsorption in nonhydrogenic systems
should be readily applicable to photoionization in nonhy-
drogenic systems once a method has been found to han-
dle the photoionization of hydrogen in a magnetic field.

In conclusion, we have described a general method to
treat any nonhydrogenic system in laboratory magnetic
fields of arbitrary strength. We have, for the first time,
obtained excellent agreement with the original experi-
ments of Garton and Tomkins on Sr and Ba. In doing so
we have revealed in detail how the quadratic Zeeman
spectroscopy of atoms can indirectly provide valuable in-
formation on symmetries (such as the 'F' in these cases)
that are inaccessible in field-free single photoabsorption

by ground-state atoms. We believe that our new theoret-
ical understanding turns this spectroscopy into a quanta-
tive technique.
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