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We apply a formalism for the description of multitime measurements to the derivation of the quantum
limit on the precision with which a pair of successive position measurements can be performed on a free
mass under conditions that would be optimal for detecting very weak forces. The result depends on the
position resolution of the measuring device as well as on the time interval between the two measure-
ments, and it spans a range of values which include a presently controversial result known as the stan-
dard quantum limit; any controversy is thereby resolved.
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Recently there has been a confluence of interest in the
quantum-mechanical effects and limitations associated
with very small scales and with ultrahigh-precision posi-
tion measurements. Examples include optical communi-
cation, laser interferometry in gravitational-wave detec-
tion, and very small-scale solid-state devices.! In partic-
ular, the quantum-mechanical limitations on the pre-
cision of successive position measurements of a free mass
are of considerable importance in connection with the
detection of gravitational waves. In this connection, a
result known as the standard quantum limit (SQL) for
position measurements [recorded in Eq. (13) below] has
been the subject of considerable interest, as well as of
some recent controversy.? It is the purpose of this Letter
to apply a formalism developed for the description of
multitime measurements to a derivation of the
quantum-mechanical limitation on the precision with
which the second of a successive pair of position mea-
surements can be performed with the objective of detect-
ing and measuring very weak forces (or very small ac-
celerations). We shall refer to this result as the quan-
tum limit, or the QL [recorded in Eq. (10) below], so as
to avoid confusion with the SQL. As will be seen in the
following, the crucial feature in the present derivation is
a careful definition of the precision in question in refer-
ence to the purpose of the underlying experiment and the
explicit incorporation of the properties (e.g., finite reso-
lutions) of measuring devices in the description of quan-
tum measurements, a point which has served as a guid-
ing principle in the developments that have led to the
present formulation.3~* (References 3, 4, and 5 will be
referred to as Papers I, II, and III, respectively.) It
should be pointed out here that the relevance of the finite
resolution of the measuring device was recognized by
Caves when he attempted to reestablish the SQL after a
serious flaw in the standard argument had been pointed
out by Yuen; see the Letters cited in Ref. 2.

The SQL (for position measurements) states that in
two successive position measurements of a free mass m, a
time T apart, the second measurement cannot be predict-
ed with a dispersion less than (T/m)"2. On the other
hand, the above-mentioned Letter by Yuen maintains
that the so-called contractive states in fact violate the
SQL and reduce the dispersion in question below the
quoted value. The current (and rather unsettled) state
of the issue is summarized in Caves’s Letter. The under-
lying difficulty, as may be seen in the cited works, is a
lack in the existing literature on measurement theory of
a realistic formulation capable of analyzing problems
that arise in actual measurements. We believe the
present formalism provides an appropriate means for
treating such problems. As we shall see in the following,
our analysis shows that the QL in fact spans a range of
values depending on the position resolution of the
measuring device, and that the lower limit of this range
is indeed lower than the SQL value by a factor of V2.
To provide the physical basis for the following analysis
and to arrive at a proper definition of the precision in
question, we shall first consider the detection problem
that underlies the QL.

Gravitational-wave detection by laser interferometry is
based on measurement of the (very weak) force exerted
by the passing gravitational wave on (fairly large)
masses attached to the end mirrors of a (laser powered)
Michelson interferometer by successive measurement of
the positions of the mirrors and determination of the re-
sulting acceleration (for details, see the book cited in
Ref. 1). In trying to determine the quantum-mechanical
limitations imposed on the sensitivity with which forces
can be determined by means of successive measurements
of the position of a free mass, Braginsky and Vorontsov?
recognized the reciprocal relation between the uncertain-
ty in the measured value of the force and the time
elapsed between the two measurements. This and related
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uncertainties, commonly referred to as SQL’s, originate
in the uncertainty in the measured values of the position
of the mirrors, hence the focus on the precision of succes-
sive position measurements. Clearly then, we must de-
fine the precision in question for conditions of optimal
sensitivity with respect to the measurement of forces.
With this point in mind, we now turn to a description of
the measurement in question.

Consider two successive measurements of position at
times —7/2 and +7/2 by means of a device whose
resolution for position measurements is Ax. This partic-
ular measurement, as well as the formalism, the underly-
ing assumptions, and the notation used here, is described
in III, where it is shown that the state of the free mass m
so measured is given by the density matrix

p=Z lexp{l—=Y I\ #*(=T/2)+2r* 75 (+T/2)1.
¢))

The objects of our attention for the moment are the
three variances (6x ¥ )2 and (6X)? defined by

GxE2=Triplx (£ T/2)18 — {Trlpzx (£ T/2)1}?,
(X )2 =Triplx(T/2) —2(—T/2)13
—{Tr(Bx(T/2) =2 (—=T/2)D}%, ()

where, for any operator that does not explicitly depend
upon time,

(M) =0ND)Z0(T), UG)=exp(—itp*/2m),
and where the absence of a time argument implies the
reference time ¢t =0. Note that (6X)? represents the
variance in the displacement of the mass m. Since this
displacement is given by X=x(T/2)—x(—T/2)
= (T/m)p, we find the simple result

(6X)2=(T/m)HTr(pp*) — [Tr(3p)13. (3)

To arrive at the desired limitations on &x ¥, we find it
expedient to consider a unitary transformation imple-
mented by

V =exp(imz2/2T Jexp(iTp*/4m).
The transformed state gy = 17;517* is then found to be
pr=2 lexpl— X, I\ AF+AF A7, (4)

where we have used Vi(—=T/2)Vt =%, and VZ(+T/
2Vt =(T/m)p. The latter quantity, (T/m)p, is just
what we have called § in Eq. (4), so that #f are in fact
projection operators for momentum bins of size
Ap =(m/T)Ax. Therefore, Eq. (4) describes a canoni-
cal measurement of state (cf. III) accomplished by
means of a position measurement with resolution Ax and
a momentum measurement with resolution Ap =(m/
T)Ax. Moreover, in the V representation, the variances
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appear as
(6x )2 =(T/m)*{Tr(5,p>) — [Tr(5,p)13,

(5)
(6x ) ={Tr(pyx?) — [Tr(py2)13.

In other words, 6x * are respectively equal to (T/m)ép
and 8x in the new representation. Our next task is to
derive the appropriate quantum-mechanical limitations
on 6x T and 6X.

The quantity 6X, is, by Eq. (3), proportional to the
momentum dispersion in the original state p. Precisely
this momentum dispersion was considered in III [see Eq.
(A1)] where it was shown to be bounded below by
(T/m)"2. Hence

SX=(T/m)'2 6)

Moreover, it was shown in III that the state which mini-
mizes 6X is time-reversal invariant, with A;f =);.
Since, by Egs. (1) and (2) above, the two dispersions
ox* are equal whenever this holds, we find that

8X = (86X ) min implies 6x* =6x . @)

As for the quantum-mechanical limitations on 8x ¥ in
general, we observe that according to Egs. (5),
(6x*)(6x ™) =(T/m)Uy, where Uy is the dispersion
product (8x)(8p) for the state py. Recall that gy
represents the result of a canonical measurement by use
of devices with position and momentum resolution equal
to Ax and Ap =(m/T)Ax, respectively.

Precisely this measurement was considered in II,
where we found that Uy has a universal lower bound Ujys
which is a function of the dimensionless quantity
k=(Q2n)"'(Ax)(Ap). Moreover, we found that®

Uii(k) =+ + (n/6)k + 0 (k?), k<1,

Unek)=(/6)k +- -+, k>1. ®)

In particular, in the limit of k=0 one has Uj,(0) =+,
which is the standard Heisenberg result. On the other
hand, the behavior for k >>1 is a purely classical result
arising from finite resolutions (recall the definition of k
given above).

In terms of Ujys, we have the general result

8xté6x ™ =(T/m)Uipi((m /22T ) (Ax)?). )

Again, the k=0 limit of Eq. (9) is an immediate conse-
quence of the commutator condition [X(T/2),x(—T/
2)1=—iT/m.

Having assembled the necessary results, we shall now
proceed to the precise definition of the QL for position
measurements. As stated in the introductory discussion,
we must define the dispersions §x * for conditions of op-
timal sensitivity for force measurements. Let us consid-
er, then, following Ref. 2, the case of a mass m subject to
a constant force F during a time 7. Classically, the mass
would undergo a displacement X equal to (F/2m)T?>
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As a measure of the uncertainty in the determination of
F, one can consider the dispersion 8F = 2m/T*)éX, and
regard (8F )min as representing the limit of detectability
of forces by successive position measurements.” What is
crucial here is not the details of how (8F)min is defined
but the simple fact that it involves the displacement X
and not the individual positions X (% 7/2), with the im-
mediate consequence that optimal sensitivity in force
detection is achieved by those states that minimize 8X.
Since by Eq. (7) such states possess the property that
&xt =6x", we are led to define the quantum limit for
position measurements, /, to be equal to éx ¥ for those
states p for which éx* =6x~. Recall that such states
are time-reversal invariant (with the origin of time ad-
justed so that the measurements occur at t =+ T/2).
Indeed, one can easily show that the variance in position
values as a function of time for such states is given by

[6x (D =12+(6X)*(:/T)*— 11

This formula clearly shows that the time-reversal states
are contractive for —7/2=<t=<0 and expansive for
0<t=<T/2, and that (X(—=T/2)p+px(—T/2))
= —(m/T)(6X)? is negative definite [cf. Yuen,> Egs.
(1) and (2), and remarks subsequent thereto].

We are now in a position to state the results of the
above analysis. Using Eq. (9) together with /=6x*
=46x _, we arrive at

1= 1002Uie((m /22T ) (Ax )?N2 (QL), (10)

where we have defined /o= (T/2m)"2. Equation (10) is
our statement of the quantum limit for successive posi-
tion measurements. Using the limiting behavior of Ujy¢
given in Eq. (8), we obtain from Eq. (10)

[=1ol1+ 35 (Ax/10)?], Ax/lp<]1, an

for high-resolution and/or long-duration measurements,
and

1= 1/V12)Ax, Ax/lg>1, (12)

for low-resolution and/or short-duration measurements.
Note that Eq. (12) states a classical result,® as does the
second member of Eq. (8), and it merely reflects the fact
that the finite bin size Ax induces a minimum in the
dispersion 8x which cannot be reduced below (1/+/12)Ax
(corresponding to a uniform spatial distribution confined
to a single bin). Other types of “binning” are readily
discussed.
For comparison, we note that the SQL gives

=21, (SQL), 13)

with a lower limit which is independent of Ax and falls
between the absolute minimum /o seen in Eq. (11) and
the classical result given in Eq. (12). One can see from
Egs. (10)-(12) that the two important scales in the
problem are the position resolution Ax and the natural

quantum scale of the problem /y. For example, for suffi-
ciently long measurement times 7, /o can be made arbi-
trarily large (for a fixed mass m) so as to render the re-
quired resolution for achieving the absolute limit a rela-
tively easy task. Physically, this corresponds to the fact
that for such long measurement times, the spread in the
spatial distribution is enhanced to such a degree as to
make the finite bin size Ax inconsequential.

As pointed out in the introductory remarks, the
current discussion on the SQL arose in connection with
gravitational-wave detectors using laser interferometry.
The most optimistic estimates of Ax for these devices
place it at or about /g, i.e., Ax 2 /. On the basis of Eq.
(11), then, one would expect that / /g for such resolu-
tions. However, it should be remembered that the es-
timated optimal resolution Ax 2/ is subject to a number
of conditions,” among which is a stringent requirement
on the measurement time 7 (which must be matched to
the interferometer parameters so as to minimize thermal
noise), and also that the presently achievable resolutions
actually correspond more closely to the limit given in Eq.
(12).
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