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Our formalism for describing quantum measurements is generalized to the multitime case and used to
derive rigorous time-energy uncertainty relations. For a free particle, we find that TBH 2, where BH
is the dispersion in energy and T is the measurement duration as given by an external clock of arbitrarily
high accuracy. Moreover, any system used as a clock obeys Bt80 —,', ~here 8t is the dispersion in the
values of time as measured by the system.
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Recently we presented a formalism for a nonidealized
description of quantum measurements. Recognizing that
information obtained in a quantum measurement is in

general insufficient to determine the state of a system,
we developed the statistical mechanics of quantum mea-
surements on the basis of a maximum uncertainty princi-
ple' (Paper II). This principle was in turn inspired by an
entropic formulation of uncertaintyz (Paper I) that
adopts the information-theoretic entropy as a measure of
uncertainty, and as such it is the expression of the princi-
ple of maximum entropy in the context of quantum
mechanics. It was shown in II that the maximum-
uncertainty principle implies the standard von Neumann
expression for ensemble entropy, and thereby provides a
unified basis for all of statistical mechanics.

The above developments made no reference to time, as
all measurements were assumed to refer to a common in-
stant of time. For example, in the case of position and
momentum measurements which we shall refer to as
"canonical, " we assumed the existence of a device cap-
able of measuring momentum with a given resolution
without further analyzing the nature and possible limita-
tions of such a device. In this Letter we extend the for-
malism so as to describe explicitly both observables of
the canonical measurement. This will in turn lead us to
consider the occurrence of measurements at more than
one time. %e then arrive at a multitime generation of
our formahsm which enables us to analyze a number of
long-standing issues regarding the role of time in quan-
tum mechanics in a rigorous way. The main results ob-
tained by means of this analysis are uncertainty relations
between momentum and time (Statement A below), and
between energy and time (Statements B and C). A re-
lated analysis of the quantum limitations on the accura-
cy of the second of a pair of position measurements of a
free particle, recently discussed in the literature in con-
nection with gravitational-wave detection by laser inter-
ferometry, is presented in the following Letter.

We start our analysis by examination of the basic,
operational meaning of time. Generally speaking, time
in a dynamical theory is a parameter that marks change;
to every (closed) system a Hamiltonian operator H may
be assigned which determines changes in measured
values of the observables of the system by means of the
fundamental dynamical equation dA i [H,A ]dt Obvi-.
ously, this parametric description may be rendered coor-
dinate free by comparison of dynamical rates directly,
thereby removing all reference to the parameter time.
Similarly, time is itself defined and measured self-
consistently on the basis of the fundamental dynamical
equation. Clearly, time as such has no independent
status in dynamics, and any statement regarding time
must ultimately be predicated on observed changes in the
measured values of the properties of the system. Since
information on changes can only come from comparison
of data at different times, the necessity of multiple-time
measurements becomes evident. 4

We are thus led to characterize a general quantum
mechanical measurement as entailing observables
A "(t,"), where v labels different observables, and r labels
the times at which a given measurement is performed
(see II for notation). As in I and II, by measurement we
mean a process that prepares a state, and it entails the
production of a sufficient number of copies of the sys-
tem, a fraction of which is subjected to interaction with
measuring devices, thereby serving to prepare/measure
reproducibly the remaining copies. While, on empirical
grounds, we believe that there are no fundamental limi-
tations on measurements that cannot be deduced from
the above statistical description, and that consequently
this formulation is the most general prototype for the
description of preparable states, it must be clearly under-
stood that the generality of our results rests on this sta-
tistical description of quantum measurements. With this
point in mind, we recall from I and II that the measure-
ment of an observable A is in general accomplished by
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means of a measuring device D" which entails a parti-
tioning of the spectrum of A into a number of subsets

a;, called bins, with a corresponding decomposition of
the Hilbert space into orthogonal subspaces At,"with as-
sociated projection operators rt,". . The measured data are
then summarized in a set of probabilities, 'P;, for finding
the outcome of the measurement of A to be within the
bin a,". We also recall from II that in general the mea-
sured data are not sufficient to determine the state of the
system (which is specified by a density matrix p); using
the maximum uncertainty prinriple, we proposed that p
be determined by maximization of the ensemble entropy
—tr(plnp), subject to the constraints imposed by the
measured data, Pt" tr(trt"p).

The novel feature here is the occurrence of non-

simultaneous constraints. However, these may be simply
expressed as P~",= Int"(t,") tr [tr;"(t,")p], where x;"(t,")

Ut(t„")rt;"U(t„") The. evolution operator U is defined
as usual by (i8/8t)U(t) HU(t), with U(0) 1. (In
the absence of a time label, the reference time t 0 is to
be understood. ) The density matrix P is now given by

p Z ' exp gX-(",rt)"(t,"), (1)

following Eq. (3) of II. The partition function Z and the
Lagrange multipliers A, are given by trp 1 and P;",

( —8/W. t"„)InZ. The multipliers are constrained to be
real by the Hermiticity of p. Note also that since

p(t) U(t)pUt(t), p(t) may be obtained from Eq. (1)
by our everywhere replacing t," by t„" t, as ex—pected
from time-translation invariance. It is also worth noting

here that t enters the above expressions through the evo-

lution operator U(t), and that the set of U(t) form an

Abelian group which is parametrized by t (cf. earlier re-

marks concerning the meaning of time).
Questions regarding time may now be answered on the

basis of Eq. (1). In the following application, we shall

apply Eq. (1) to the simple case of a free particle of mass

m and Hamiltonian H ~P /2m whose state is measured

by means of two position measurements at times t~
—T/2 and tz T/2. We shall see in the following

Letter that this measurement is in fact equivalent to the
canonical (position and momentum) measurement con-
sidered in I and II. We assume that the best resolution
available for position measurements is h, (see Ref. 7 in

II), corresponding to the bin arrangement a,".- [(i —
z )h, (i + —,

' )6], i -0, + I, . . . . The density ma-

trix that results from this measurement is, following (1),

p Z 'exp[ —g,.g; x("(—T/2)

+&;+,"(+T/2) ]J, (2)

where, as before, P; (—8/N;)lnZ are th. e probabil-
ities obtained from measurements at times T T/2,
respectively. Every physically realizable set of P;
(equivalently, every set of real A,; ) will determine a

bp ~ (m/T)'t2,

T(H) ~ —,'.
(Al)

(A2)

state sperified by P. Our task below consists in showing
that certain uncertainty products involving T, which is
the duration of the measurement, cannot be reduced
below a certain minimum value.

To arrive at uncertainty relations involving T, we first
note that the case of T 0 actually corresponds to a sin-

gle position measurement, a case known to fail as a mea-
surement of state (since trp diverges; see II). Therefore,
for a measurement to yield a physically acceptable p, ~e
must have T &0. With T &0 fixed, our first task will

be to determine the minimum value of bp [tr(pp )
—[tr(pp)] ]' as )I,t are varied over all possible (real)
values. We shall refer to the states p resulting from
these variations as the set of preparable states (prepar-
able, that is, by the device described above).

Suppose the minimum we are seeking is achieved on

po, because bp is even under 7', this minimum will also
be achieved on po 7'p07, where 7' is the (antiunitary)
time-reversal operator defined by 'Tx'Tt x and
7'p 7't —P. On the other hand, 7rt,"(—T'/2) 7't

rr, (+T/2). The latter, together with (2), shows that
p~ can be obtained from p by merely the interchange of

and k;+, as one should ex ct on the basis of time-
reversal invariance. Hence p is a preparable state if p
is. Moreover, the state pe (cos 8)p+(sin28)p will

also be preparable since pe is experimentally realizable
as the given mixture of two preparable states p and p .
It then follows that if po minimizes Tbp, so will

2 (po+p0 ). The latter is clearly a preparable and mani-

festly time-reversal-invariant state. We may therefore
assume po to be time-reversal invariant without any loss
in generality.

An entirely analogous argument shows that po may be
assumed to be parity invariant as well. But then Eq. (2)
indicates that for po, A,;+ X; (time-reversal invariance)
and X; A, -; (parity invariance). These two invari-
ances then guarantee that po will also be "Fourier invari-
ant, "where the Fourier transformation P(T) is here de-
fined by P(T)xPt(T) (T/2m)P and P(T)PPt(T)

—(2m/T)x. Note that the kernel P(T (x,x') (m/
rrT )'t2exp[(2mi/T)xx'] realizes the unitary operator
P (T) in the x representation.

Using the parity and Fourier invariance deduced
above, we see that tr[pop ] tr[po(2rnx/T) ], so that
(bp);„~ tr[po[p +(2m/T) x ]]. Since the latter is

simply the expectation value of a harmonic-oscillator
Hamiltonian in the state po, we can conclude that
(By)~;„rn/T. For the free particle under discussion
(H);„(p /2m) 1/2T. Thus we have Statement A:
A free particle of mass m, whose state is measured dur-
ing a time period T, will have a dispersion in its momen-
tum no less than (m/T)'t2 and a mean energy no less
than 1/2T; that is,
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Note that the lower limits in (Al) and (A2) correspond
to a pure state, namely a Gaussian with wave function
exp( —mx /T). Strictly speaking, such a pure state 1s

inaccessible to actual measurements.
Statement A is a momentum-time uncertainty condi-

tion. To find the analogous result for energy and time, a
lower bound for (bH) (H ) —(H)2, the variance in en-

ergy, must be determined. Exploiting the Fourier invari-
ance established above, we can write (p") —,' (p
+(2m/T) x ), similarly for (p ), and from these con-
clude that (bp ) 4 (bh+) + 4 (bh ), where

h ~ p +' (2m/T )2x . Now, it can be shown

mathematicallys that (h )~(2m/T) . Since Fourier
invariance implies that (h ) 0, we see that
(bh )~2m/T, and consequently (Bp )~m, /T. This
yields Statement 8: For the measurement described in

Statement A, the dispersion in energy will be no less
than 1/2T; or

(8)

Statements A and 8 above express fundamental limita-
tions in the accuracy of energy (and momentum) mea-
surements arising from the finiteness of the duration of
the measurement. A tacit assumption in the above is the
existence of (external) clocks of arbitrary accuracy (to
measure T). But as pointed out at the outset, time is it-
self measured by means of changes in nonstationary sys-
tems. Therefore any system can in principle serve as a
clock, and a moment's thought reveals that there is a re-
ciprocity between the accuracy with which a system can
measure time and the dispersion in the measured values
of its energy. We now turn to a derivation of this rela-
tionship.

Suppose an observable A of a system in a state p is
used to measure time (e.g., spin of the cesium atoms in a
cesium clock). The system is then a clock and A is the
chronometric property being utilized. Consider a read-
ing of this clock to measure the time of some event. In
essence, this corresponds to a measurement of A simul-
taneously with the event, and a mapping of that value
onto a corresponding value of time according to the
equation of motion A (t ) tr[p(t )A ]. Now the mea-
surement of A will yield a distribution described by
the probability function P (A ), where P (A )dA

tr[p(t)H(dA )], with 8"(dA ) denoting the projection
operator onto the spectral interval dA. The operator
x"(dA) is well defined when A is self-adjoint. Clearly,
the distribution in the values of A induces a correspond-
ing one in the values of t in the usual way, namely,
P(r)-[dA(&)/Ch]P[A(r)]. With P(t) at hand, we
can define (bt ) fdr P(r )(r i ), where t-

fdr P(r )r. Alternatively, we find

(br )' -„IdA P (A ) [r (A ) —r ],

where r(A) is the function inverse to A(r). Relating
P(A ) back to p, we arrive at a remarkably simple, and

intuitively plausible, result:

(br )' -tr fp(r ) [r (A ) —r ]'}. (3)

It should be noted that the variance (br ) is a joint prop-
erty of the state of the clock, p, and the chronometric ob-
servable A (together with the device used to measure
A).

With Eq. (3) at hand, we can use the generalized
Heisenberg inequality to conclude that (br)(bH)
~ —,'

( tr[p(r ) [H, r (A )]j ~; this lower limit will be denot-
ed by —,'X. Note that X is simply the magnitude of the
rate of change of the operator i(A) in the state p(t).
Our final task, then, is to minimize X by finding the op-
timal chronometric observable Ao. However, if Ao is to
give rise to an extremum of X, the first-order change in
X caused by a change in A must vanish. This standard
condition requires that [H,D (A )] 0, where D (A )

dt(A)/dA. The vanishing of the commutator in turn
forces A to be a function of H, unless D is the trivial
function D(A) Do, where Do is a constant. However,
if A is a function of H, dA (r )/dt will vanish, and A will

not serve to measure time, let alone minimize X (instead,
it will maximize it). This leaves D Do as the only
choice, which in turn implies that A (t) is a linear func-
tion of t; with no loss in generality, one can set A (t ) t.
Thus we have the result that the optimal chronometric
observable Ao (if it exists) is characterized by the condi-
tion t tr[p(r)AO]. The corresponding value of X is

easily seen to be unity, which therefore implies State
ment C: The dispersion bt in the values of time mea-
sured by means of a system used as a clock cannot be re-
duced below (2bH) ', where bH is the dispersion in the
energy of the system; in other words

(bi)(bH) ~ —,'.
It is worth emphasizing that the above proof does not re-
quire the existence of the optimal chronometric observ-
able Ao. Indeed, the fact that H does not in general ad-
mit a (well-defined) canonical conjugate shows that
t(A) does not exist in general. Nevertheless, the energy
of a quantum system does have an uncertainty conjugate
which is time as measured by the system itself.

We conclude with a few remarks: (a) The uncertainty
relations A, 8, and C are consequences of the canonical
commutation relations and do not have an independent
status. (b) While the lower limits in (Al), (A2), and
(C) are greatest lower bounds, the proof we have out-
lined in Ref. 6 does not establish the same for (8). In
any event, actual experiments impose further, often more
severe, restrictions arising from finite resolutions, etc.,
with nontrivial consequences. Papers I and II and the
following Letter illustrate examples of these. (c) Bohr's
statement of time-energy uncertainty relation essentially
corresponds to statement 8 (cf. discussions relating to
Einstein's photon box experiment ). (d) A time-energy
uncertainty condition first presented by Mandelstam and
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Tamm, s and subsequently questioned and discussed in

the literature, is usually considered to be the only exist-
ing one derivable from quantum mechanics. s Notwith-
standing a bewildering variety of interpretations for it in

the literature, the Mandelstam-Tamm result resembles
our statement C more closely than it does A or B. (e)
Statements A and 8, derived for free particles, obviously
hold also for a bound particle if T is sufficiently small in

comparison with the time scale relevant to the bound
state in question.
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