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The maximum-entropy formalism is used to characterize the fluctuations in transition strengths for a
bound quantum-mechanical system. In the chaotic limit only one, ever present, sum rule is required as a
constraint. The resulting distribution is that of Porter and Thomas, which can also be derived from
random-matrix theory. For nonchaotic systems the distribution of transition strengths has a lower entro-
py. A possible additional constraint, operative during the onset of chaos, is proposed. The distribution of
maximal entropy subject to both constraints accords with computed intensities in a system of two de-

grees of freedom.
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The onset of chaos in nonintegrable conservative clas-
sical systems of few degrees of freedom is by now well
characterized.! Recently>* there has been considerable
interest in determining whether the corresponding quan-
tum systems carry a signature of the classical chaos.
Much of this effort has concentrated on the features of
the energy spectrum, both eigenstates* and eigenvalues,
and especially on the energy-level-spacing distribu-
tion.>"® The conclusion was that as the classical motion
was changing from regular to chaotic, the nearest-
neighbor level-spacing distribution was changing from a
Poisson’ to a Wigner®!®!! distribution. It was further
suggested>® that the chaotic system has the statistics de-
rived for the Gaussian orthogonal ensemble (GOE) of
random matrices.!?"!* It is well known that the GOE
provides a realistic description of the statistical proper-
ties of complex heavy nuclei with a large number of de-
grees of freedom.!? More incisive tests, however, are re-
quired before such a description is adopted for systems
with a few degrees of freedom in the chaotic regime.

This Letter examines the signature of classical chaos
in the fluctuations of the transition strengths in the cor-
responding quantum system. In the extreme chaotic lim-
it we expect to obtain a Porter-Thomas'® distribution.
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This distribution is known to describe successfully the
resonance-width distribution of complex nuclei'>!? and
can be derived from the GOE Ansatz. This Ansatz
refers, however, to an ensemble of Hamiltonians while
the system under study has a single, well-defined Hamil-
tonian. We therefore present an alternative derivation of
the Porter-Thomas distribution which avoids the use of
an ensemble of Hamiltonians. The derivation offers the
further advantage that the procedure we use is not re-
stricted to the chaotic limit. Indeed, we shall suggest one
possible extension. The general procedure that we pro-
pose is to maximize the entropy of the strength distribu-
tion. The Porter-Thomas distribution is obtained when
the only constraint that is imposed during the maximiza-
tion is an ever-present sum rule on the total strength of
the transition. Additional constraints, if warranted, lead
to other distributions, which necessarily have lower en-
tropy. As an example we derive a 22 distribution with v
degrees of freedom (v=1 for a Porter-Thomas distribu-
tion) for a system that is not fully chaotic.

The analytical results are examined for a concrete
model: a system with two degrees of freedom with a
bounded, Hénon-Heiles-type potential.'® The transi-
tions we consider can be thought of as optical transitions
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(in the Condon approximation) to an electronically ex-
cited state of the same system but with a different equi-
librium position.!”!? This physical motivation is impor-
tant because the experience with regular spectra would
suggest that such spectra are very structured with defin-
ite propensity rules. Indeed, it is only for the subset of
higher-lying final states that we find evidence for chaotic
behavior.

The transition strength for a quantum system of a
given Hamiltonian and a particular probe?® (operator) T
is defined by

y=IT||*=]|x|% (1)

Here |i) is a fixed initial eigenstate and | f) is any final
eigenstate. The magnitude of y will differ for different
final states and, hence, one can construct the density
function, P(y), of y such that P(y)dy is the probability
to locate the transition strength in the interval dy around
y. Of course, the bound quantum system has discrete
eigenstates so that the continuous density function P(y)
is an idealization and, in practice, the distribution of y is
obtained as a histogram on the y axis. It is important to
note that such a histogram makes no reference to the en-
ergy of the final state f. The aspect that we are examin-
ing is fluctuations in the magnitude of y. This is a dif-
ferent manifestation of the nature of the spectrum than
the nature of the intensity variations as the energy of the
final state is being systematically increased. In fact, as
will be explicitly noted below, we remove the secular
variations in the intensity prior to the construction of
P(y) for our model system.

The strength function is constrained by the complete-
ness condition in the eigenstates to satisfy the following
sum rule:

YASITIDIE=G]T T[4, ()

For a Hamiltonian that is time-reversal invariant the
eigenstates can be chosen to be real. If T is also time-

[C(N/2)/7' 2T (N —1)/2)10 = x2)N =32 . (N/27)2exp(— Nx/2),

N large
where NV is the dimension of the Hilbert space. If we
choose for the normalized fixed state |a)

=T |i)/i | T'T | i) the distribution (7) reduces to (6).
The derivation of (6) by maximal entropy therefore has
the advantage of being more directly related to the typi-
cal physical situation in which the Hamiltonian is
known. A second advantage, which we shall now make
use of, is that the derivation can be extended to those sit-
uations which are not fully chaotic and, hence, additional
constraints are required. The sum rule (3) is, of course,
valid irrespective of the character of the classical motion.
It is therefore always imposed. Say now that we impose
additional constraints, but at the same value for (x?2).
Whatever these additional constraints are, the procedure
of maximal entropy will predict a strength distribution
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reversal invariant then the amplitude x ={f | T'|i) is real
and the sum rule (2) can be written as

f:xlp(x)dx =(/N)i|T'T|4), (3)

where N is the total number of quantum states. The am-
plitude density P(x) is related to P(y) as usual,
S P(x)dx =P(y)dy, where the summation is over the
two values of x such that y =x2. In rewriting (2) as (3)
we have grouped the transition strengths into bins ac-
cording to their size and thus replaced the summation
over final states by summation (i.e., integration) over the
bins.

The sum rule (3) imposes a given value for (x2). We
take it that when the quantum system is fully chaotic, its
states are so complicated and devoid of any individual
characteristics?! that no other constraint except the sum
rule (3) is carried by the strength function.?? The distri-
bution can then be found by maximizing its entropy?*

stPl=—f _dxPGx)InP(x), @

subject to the constraint (3) and to normalization of
P(x). It follows by the usual procedure?* that P(x) is
given by

P(x)=(Qmx?) " V2exp(—x%/2(x?)). (5)

The entropy of this distribution is +In(2ze{x?)). In
terms of the intensity, y =x2, we have

P(y)=Qniy)) "2y~ V2exp(—y/2(p)), (6)

which is the Porter-Thomas distribution or, in statistical
terms, a X2 distribution with one degree of freedom.

The usual derivation of (6) in the present context is
via random-matrix theory.' In that derivation, the col-
lection of different final states | f) of a particular Ham-
iltonian is assumed to be represented by the nth eigen-
state (n fixed), but for a GOE of different Hamiltonians.
If |a) is a fixed normalized vector then the distribution
(in the ensemble) of the amplitude x =(n | a) is'?

@)

l

whose entropy (4) is lower than or equal to that of the
(Porter-Thomas) distribution (6).

Why would one expect additional constraints for an
intermediate situation? One obvious reason is that for a
system which is more regular we expect that propensity
rules for the transition-matrix elements become opera-
tive. A simple Ansatz for such additional constraints is
thus the averaged magnitude of the deviance of the in-
tensity y from its averaged value, (y)=( | 71T |i)/N.
This suggests a constraint on this deviance,

1--J “dy P In(y/ip)). ®)

Subject to a given value of {y) and of the averaged value
I of the surprisal, the distribution whose entropy is maxi-
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mal is

v v/2 Xv/z—l

2(y)
Here (v—1)/2 is the Lagrange multiplier conjugate to
the constraint (8). The distribution (9) is normalized
and satisfies the sum rule (3). The value of v is deter-
mined from the magnitude of /. By use of the explicit
form (9) in (8) the required relation is I =In(v/2)
—w(v/2), where y(x) is the digamma function. Gen-
erally 7 > 0 and increases as v decreases.

The distribution (9) is a 22 distribution with v degrees
of freedom. Its width is given by (2/v)Xy) and is thus
decreasing as v increases. It should be emphasized, how-
ever, that we do not necessarily expect (9) to describe
the strength distribution for intermediate situations.
Rather, we use it to illustrate the deviation from the lim-
iting case of the Porter-Thomas distribution, parame-
trized in a manner which allows a simple control of the
width.

In analysis of experimental or computational data it is
first necessary to factor our the secular variation of the
strength along the energy spectrum. For a pure initial
state, the strength function at the final energy E is de-
fined by

exp(—vy/2(y)) _ ©)

PG = rG/2)

AN T]i)28(E —Ef)
3 /8(E —Ey)

That, however, is the proper form only for a very long
time resolution.'!® In practice, the & function in (10)
must be taken as a Gaussian with a finite width. The
width chosen should be such that one obtains a smooth
variation of (y)(E) with energy. The scaling of y by
{y)(E) has been carried out for the results shown in Fig.
1.

To illustrate our argument we use a two dimensional
system with a bound Hénon-Heiles-type potential,'®

V(X,Y)

YNE) =

(10)

T X2+ YY) +e(X?Y — Y¥/3)+C(X2+Y2)2

This potential has a C3, symmetry. The eigenstates were
found numerically by diagonalization of the Hamiltonian
in a harmonic-oscillator basis and classified according to
A or E symmetry.!® Transition strengths to eigenstates
of the same potential (but with equilibrium points in X
and Y shifted by a and B, respectively), and of a given
symmetry, were computed. For any given initial state,
the distribution of transition strengths was determined
separately for the two groups of final states with energies
below and above E. (the energy at which classical chaos
sets in'®), respectively. The derivation of (6) assumes
real matrix elements. For final states of E symmetry we
have either considered separately the real and imaginary
parts of {f| T |i) or considered that v=2 in the chaotic
limit.* Figure 1 shows typical results for complex am-

15.0 4
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log (y)

FIG. 1. Three histograms of computed transition strengths
and their fits (continuous curves) by (9). Note that v de-
creases towards 2 (the Porter-Thomas value for complex am-
plitude?*) as the corresponding classical system becomes more
chaotic (v=4.4, 3.6, and 2.5 going from top to bottom). Com-
putations are for a =pg=0.5 with intensities scaled by the secu-
lar variation with energy prior to binning. The plot is vs logy
because even after scaling the intensities span a wide dynamic
range.

plitudes. When the initial state lies above E. and so do
the final states, the computed distribution is well fitted
by (9) with v=2.5. For an initial state with an energy
just above E. and final states with energy above E., the
fit by (9) is still reasonable but with v==3.6. With an in-
itial state above and final states below E., the fit is not
quite acceptable and v=4.4. For initial and final states
both below E_, i.e., in the regular regime, there are many
small matrix elements and P (y) is strongly increasing as
y— 0. This behavior is reproduced by the distribution
(9) when v <1 (if we assume real matrix elements). It
falls off as x increases from zero faster than a Gaussian;
cf. (5), which has the same width (x2). That effect is
best seen for initial and final states of comparable ener-
gy.!% It should be noted, however, that the strength in
the regular regime usually has more structure than what
(9) can describe.

In closing, we note that the chaotic limit as used here
is similar in its information-theoretic characterization to
the equilibrium limit of macroscopic physics: It is the
limiting situation where entropy is maximal, subject only
to the ever-present constraints. Deviations from that
limit can then be accounted for by use of additional con-
straints. Work is in progress on relating these con-
straints to the nature of the system and of the probe.
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